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Preface

The purpose of this thesis was to develop and evaluate a new adaptive robot

control technique. The approach included the use of a Multiple Model Adaptive

Estimator (MMAE) to determine unknown parameters needed for robot tracking

and a PD feedback loop to reject disturbances. There are presently many esti-

niation techniques used for parameter identification in robot control. Before a

preferred approach can be established, the range of possible identification schemes

must be expanded and experimentally verified.

The MMAE was combined with a model-based description of the robot.

Model-based control is a mature control algorithm that has been shown to produce

superior tracking performance when the payload in known. The MMAE was used

to provide the niodel-based control algorithm with an estimate of the mass of the

payload. Simulation and experimentation on the PUMA-560 clearly demonstrated

the radically improved tracking performance when the MMAE is employed.

I wish to extend my deepest thanks to Capt M. B. Leahy for his many

hours of assistance and constant support during this thesis. His contributions were

indispensable. I would like to also express my sincere appreciation to Dr. Peter

Maybeck for his additional enthusiasm and insights at strategic times during this

research. A world of thanks is also owed Dr. Gary Lamont, Lt. Col Z. Lewantowicz

and Mr. Dan Zambon for their invaluable services. Finally to my family, who

,Aperved the best and had to settle for me, I want them to know that without their

uinselfish love and support surviving AFIT would not have been possible.

Larry Don Tellman
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A bst ract

A new form of adaptive model-based robot control has been developed and

experinientally evaluated. The Multiple Model Based Control (MMBC) technique

u ilizes knowledge of nominal manipulator dynamics and principles of Bayesian es-

tiiation to provide payload-independent trajectory tracking accuracy. The MMBC

is formed by augmenting a niodel-based controller, which employs feedforward dy-

naic compensation and constant gain PD feedback, with a payload estimate

provided by a Multiple Model Adaptive Estimator. Extensive simulation studies

denionstrated the MMBC's ability to adapt to variations in manipulator payload

quickly and accurately. Initial experimental evaluations on the first three links of

a PUMA-560 validated the algorithm's potential. ,

0
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M ltiple Model-Based Robot Control:

Development and Initial Evaluation

I. Introductionl

1.1 Alotivat ton

The ultimate goal in robotic research is to produce a robot that will emulate

a human. The research at. the Air Force Institute of Technology has been directed

toward developing a robotic manipulator with the manual dexterity of the human

arm. Hluman have the ability to learn and to adapt to their environment. With

self adaptation niechanisins, a robot could perform a wide variety of tasks, quicker,

with Iininitmial or no human intervention. Future Air Force applications, such as

telepresence, will require a robot with the capability to adapt quickly and accu-

rately to unexpected changes in its environment while maintaining accurate high

speed tracking.

A robot is defined as a machine that performs various complex acts of a

huiman [Woo77]. Current technology can only produce robots that have the capa-

bility to replace a human for many simple repetitive tasks. The heart of the robot

is the control system that guides that manipulator along a given trajectory. The

equations of motion that define how the robot moves in space are a set of complex

non-linear, coupled differential equations. To meet future Air Force requirements,

robot, control systems must address the coupled non-linear nature of the equations

of inotion in an uncertain environment. The model of the robot including the

external payload used in the control systems must be as precise as possible to ac-

count for high speed robot dynamics. Previous research has shown that payload

adaptation is crucial to high performance tracking [Lea8gal.

1-1



I~.2 O. bj,',fit'e

The primary objective of this research effort was to develop an alternative

form of adaptive lnodel-based control that would achieve high performance tra-

jectory tracking in the presence of uncertain payload information. The secondary

purpose was to evaluate the new algorithm's potential both in simulation and on

a real robot.

1. "? Probleml Slat cinent

The use of on-line adaptation algorithms was a new research area for the

Robotics Laboratory at the Air Force Institute of Technology (AFIT). Some of

the ground work had been laid for such an effort. The PUMA-560 and computer

support were available at the outset of this research. Also, much of the software for

te simulator and the low-level control of the robot had previously been developed.

The problem addressed in this research was how to improve high speed tra-

jectory tracking in the presence of unknown disturbances. These disturbances

arise from noise-corrupted position measurements and from incorrect models of

the robot and its payload. Proper calibration of the robot provides nearly all of

the data needed for accurate models. The major remaining unknown is the pay-

load attached to the robot. Since the payload changes during normals operation,

the robot control algorithm must quickly estimate the payload and adapt to any

flicttiations that degrade tracking performance.

Adaptive control of robotic manipulators is an area of active research. One of

the most basic forms of adaptive control is the |,|odel-based approach. Experimen-

t?,l ,valuations of model-i. -eld techniiques have demonstrated their potential for

impi)roving tracking accuracy over high speed trajectories [KKR,AAGH87,CHS87,

f, 8a, Lead ,A U16, YKIX7 1 .

ut fort.unately, the nodlel- base(] apl)roac']es patterned after the computed-
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torque teclhnique LuhS31 can only ada pi Io changes inl manipulatonr joint config-

uration VCra86,FGL87. The tracking performance of those algorithms degrades

nohticeably in the presence of uncertain payloads [CHS87], even for robots with

high torque aniplification drive systems Lea88al.

Since the model-based control algorithm provides excellent tracking perfor-

mance when accurate payload information is available, one approach has been

to augment that controller with a payload adaptation mechanism [MG86,CHS87,

HBSPR7,LSRb,SL87a. A common theme in adaptive model-based control design

has been the use of Lyapunov theory to develop the adaptation algorithms. Lya-

pimnov theory guarantees that the controller will be stable and that the steady state

errors will asymptotically a)p)roach zero. That approach is well suited to the con-

stant, acceleration trajectory tracking [Cl1S87] or steady state regulation [SL87a]

of horizontally articulated manipulators for which experimental evaluations have

been conducte(. However, constant acceleration and large periods of regulation

are not representative of the full range of human arm motion. Also, the horizon-

tal manipulators were not subject to the large nonconservative forces present in

vertically articulated robots. How well Lyapunov techniques control a vertically

articulated manipulator, over a more complete range of motion, is still an open

research issue.

Other forms of robot control include the Model Reference Adaptive Control

(MRAC) and adaptive control using an autoregressive model. These methods as-

sutne a second-order model for robot dynamics is adequate, and that the coefficients

of the model are estimated on-line DD79,Ser87,LE97,KG83]. The adaptive per-

turbation control scheme on the other hand, linearizes the non-linear equations of

motion with a feedforward element and employs a full state feedback perturbation

regulator with the pertur)ation plant. antd input distril)ution matrices estimated

oh-Iiie rL(R,4,dVW871. None of these approaches attempts to model the inherent

toises iM the robot system and the estimators are based on Lyapunov or least-
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squIares techniques.

An alternative to the Lyapunov based approach is the use of stochastic esti-

niation/adaptation techniques. In a(l(lition to providing a faster means of payload

adaptation, the stochastic approach explicitly accounts for the numerous sources of

noise and uncertainty in a real robotic systeii. Multiple Model Adaptive Estima-

tion is a Bayesian estimation approach that employs multiple Kalman filters to es-

tiinate parameters quickly and accurately in the presence of noise and uncertainty.

A Multiple Model Adaptive Estimator (MMAE) has been successfully applied to

several difficult tracking problems [MZ85,MR83,Ath77,Ber83,KM87,Las87,MS85].

If that Bayesian approach could be successfully applied to the manipulator payload

estimation problem, tracking realization sufficient to emulate human arm perfor-

tinance may be possible.

J.( Approach

The robot control method developed in this thesis investigation was based

on the model-based technique that has demonstrate good tracking performance

in the presence of accurate payload information ILS88a]. The model-based con-

trol scheme is separated into two parts: a feedforward element which produces a

nonminal torque and a feedback element that employs a set of gains to reject any

remaining disturbances.

The parameter identification technique employed was based on a Bayesian

approach. The algorithm is called a Multiple Model Adaptive Estimator (MMAE)

fAth77,GW80,May82a,May82b]. The task of the MMAE was made more difficult

by t he closed loop formulation of the niodel-based technique. The parallel structure

of the MMAE as shown in Chapter 3 allows for the incorporation of many different

robot models into the estimation process. Each one, under different conditions,

is correct. This Multiple Model-Based Control (MMBC) formulation utilizes the

payload estimate from the MMAE in the feedforward element of the model-based

1-4



controller which has a heavy dependence on payload.

The testing of the MMBC technique consisted of extensive simulation and

experimentation on the first three links of the PUMA-560. The PUMA-560 was

selected as a case study for the Multiple Model-Based Control (MMBC) technique

since it has been shown that the tracking performance of this vertically articu-

lated manipulator is highly dependent on knowledge of the true payload [LS88a].

To perform the initial evaluation of the new control technique, the payload was

assumed to be completely described by a point mass.

A sensitivity analysis of the perturbation feedback element was accomphshed.

The nominal torques were calculated in the feedforward element. The perturbation

torques were generated in the feedback loop. The plant model, F(a,i), in the

Kalinan filter was based on the feedback element. Where F(a,t) is the linearized

equations of motion and a is the unknown payload parameter. The equations

for F(a,I) were developed by taking a Taylor series expansion of the non-linear

equations of motion about the nominal trajectory and ignoring higher order terms.

An analysis of the eigenvalues of F(a, t) revealed that linearized robot dynamics

was a function of the trajectory and had a weak dependence on payload.

The slight F(a, t) dependency on a required that the MMAE in this closed

loop estimation task be set up to produce an estimate of the difference between the

true payload and the assumed value in the feedforward element. The mismatch in

the payloads produced a large enough disturbance in the feedback loop that the

a- dependent modes in F(a, f) would be excited.

To produce an MMAE, the continuous payload parameter, a, had to dis-

cietized and a Kahn n filter built for each value. A single Kalman filter was built

for a, equal to 0.0 Kg i.e. no payload. This formed the first filter in the MMAE.

The filter was run in simulation with the feedforward element given the same value

for the payload as the robot (0.0 Kg). The residuals of the Kalman filter were mon-

itoredl as the payload on the robot was allowed to increase while holding the value

I1-5



of the payload in the feedforward element at 0.0 Kg. The value of the payload,

a,, that produced filter residuals that were significantly worse than the matched

payload case was used to build the next filter in the MMAE. The process was

repeated using 02 as the starting point. In this manner the entire parameter space

was discretized. The upper bound on payload was assumed to be 5.0 Kg. The

system and measurement noises in the Kalman filter based on each ai were tuned

to produce the smallest residuals when the difference between the assumed payload

in the feedforward element and the payload on the robot equaled ai.

The MMBC algorithm was tested in digital simulation employing several

different. robot arm trajectories. Each trajectory stressed a different aspect of the

MMBC control scheme and in all cases the potential of using the new MMAE

technique to estimate the payload was demonstrated. The results were validated

by using the same algorithm to control an actual PUMA-560. No additional tuning

of the filters in the MMAE was performed and the results still showed the payload

estimate could radically improve tracking performance. Tuning the filters would

produce a better estimate of the payload and further improve the tracking errors.

1.5 Accomplishments

A new and unique adaptive robot control algorithm has been developed and

evaluated. A novel parameter estimation scheme had to be produced to oper-

ate within the closed-loop model-based control structure. The resulting control

technique produced tracking errors that matched artificially informed controller

(SMBC), (a controller that has been informed of the actual payload value) in both

simulation and experimentation for a PUMA-560.

An analysis of the perturbation plant, F(a, t), was performed. The analysis

indicated that, for a given trajectory, F(a,t) was not constant. This realization

indicates that the often used constant F(a, t) assumption is valid only for very slow

trajectories. This study also revealed that the dependence on a in the perturbation

1-6



plant was reduced because of the PD feedback loop.

The end result of this research moves the Air Force one step closer in the

trek to produce a robot that emulates human motion. The findings in this thesis

investigation can be expanded to other areas that involve closed loop estimation

of a parameter needed to improve nominial trajectory computations.

1.6 Organization

The remainder of the thesis is broken into four chapters. Chapter 2 reviews

current adaptive robot control schemes. The discussions include the different sy6-

tern representations as well as the assorted parameter estimation algorithms em-

ployed. Chapter 3 develops the MMBC for the general case. Chapter 4 presents

a case study for the PUMA-560. The results from the digital simulation and the

experimental evaluation are discussed. Chapter 5 contains the concluding remarks

and recommendations for future research.

0
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0
I. Literature Review

2.1 Introduction

The heart of a robotic manipulator is the control scheme. The controller

moves the robot along a given trajectory from one point in space to another in the

performance of a predetermined task. Existing industrial designs are inadequate

for high speed control of manipulators [Lea88a,LS88a]. High speed is necessary for

robotic flightline maintenance and telepresence applications. These applications

usually involve scenarios where the mass of the payload and the environment are

not known explicitly and may be time-varying. Unknown and time-varying param-

eters cause uncertainties in the control system design. These uncertainties as well

as other system noises must be accounted for or adapted to in order to maximize

the performance of the robot.

The foliowing review of robot control examines previously proposed central-

ized control techniques that do not require additional measurement data such as

torque or force. Specifically, this review covers the classical approach to robot

control [Luh83,Goo85] and continues with four other prominent robot control

themes proposed in the current literature. They are Model Reference Adaptive

Control (MRAC) [DD79,Ser87,Goo85I, adaptive control using an autoregressive

model (KG83], adaptive perturbation control [LC84,dVW87], and dynamics-based

or model-based adaptive control [Lea88a,LS88a,CHS87,SL87a,Goo85].

2.2 Background

A robot can assume many different physical configurations depending on

the particular application (see Figure 2.1). A typical industrial robot consists

of mechanical links connected by rotary or sliding joints providing six degrees

of freedom. The links are moved by a drive system with electric, hydraulic or

2-1



Link 2

Jointa 2

Jo in I .Jo n t

Aon 0 --
Stanford robot.

0 0

i Link 4

~Link 5 0 j

Link 6 / Joint 6

+X~ +z

PUMA robot

Figure 2.1. Some Typical Robot Configurations

pneumatic actuators. The equations of motion for a single link can be expressed

as a linear differential equation. However, when the links are connected together

they become a set of complex nonlinear, coupled differential equations [FGL87]:

NT(I) = [D(q, a) + N2 M]ij + h(4, q, a) + N'B,., + ro + g(q, a) (2.1)

where:

e n =the number of links in the robot

2-2



* q, q, n-vectors of joint angles, velocities, and accelerations.

• a(t) = in-vector of parameters representing the unknown load as a function

of time.

" N = n x 77 diagonal matrix of gear ratios for each joint('link ve oaity P

" D(q, a) = - x it matrix of manipulator inertias which depend on the load and

the position of the manipulator.

" M = diagonal n x n matrix of actuator inertia terms.

" h(q, q, a) = n-vector of centrifugal and Coriolis torques.

" r, = n-vector of static friction torques.

" B, = n x i diagonal matrix of damping coefficients

" g(q, a) = n-vector of gravity loading terms.

* T(t) = n-vector of joint motor torques.

2.3 Conventional Control

In conventional robot control, the complex movement of a robotic manip-

ulator is separated into the independent control of a series of single links. Luh

presents a detailed development of a transfer function for a single link for unity

feedback and electrical actuators [Luh83]. Foi link i in the LaPlace domain, the

transfer function has the form of:

Q.(s) NKq K (2.2)

Qd(s) RJ,.ff [92 + ---- I (. , K__b_. +
RJ 1 ' RJ,

where:

" Q, commanded input position.

" Qd output position.

0
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0 . N gear ratio.

* h = encoder conversion constant in -
q rad'

9 K, = torque constant of the motor in

* K%7b -back EMF constant in Amp

* 1 = resistance of the motor windings.

* Jeff = effective inertia (NMi + Dii).

* Bff effective dampening coefficient (NiB,,).

In Luh's development the motor inductance was assumed to be negligible

compared with the motor inertia. Equation (2.2) represents a second-order transfer

function with its poles in the left half s-plane. Goor states that the motor dynamics

must be included in the robot model in [Goo85] and develops a transfer function

that inchdes motor inductance. The result is a third-order system with the driving

input being motor voltages instead of torques. Goor maintains that, with motor

dynamics included in the link transfer function, the speed of the robot can be

increased without sacrificing performance [Goo85:page 7].

The gains of a second or third-order robot control system have upper lim-

its determined by the resonant frequency of the structure and the desire for no

overshoot. Overshoot could cause the robot to hit the environment. On the other

hand, high gains are required to reject unmodeled disturbances such as changes in

the payload. From Equation (2.1) it can be seen that the larger the unmodeled

payload, the larger the disturbances. As shown in Equations (2.1) and (2.2), the

payload contributes to the Je1 1 term and affects the natural frequency and damp-

ening coefficient of the system. The standard industrial practice is to tune the

control law for critically damped response with the assumed maximum payload

[LS88a].

In order to linit the effect of disturbances, the speed of the robot must be

held to a inininium. This insures stability of the robot over the entire operational

2-4



envelope. With high gear ratios, the siliiple second-order model can he used for

point-to-point control if the gains are properly adjusted and the speed is kept within

bounds. If the payload information were known a priori, many of the disturbances

(e.g. gravity and Coriolis/centrifugal) could be compensated, and the controller

gains could be adjusted to provide maximum stable performance. The desire for

payload information a priori is similarly true for the third-order model.

2..J Model Reference Adaptive Control (MRAC)

Model Reference Adaptive Control (MRAC) [DD79,Ser87,LE87] (see Figure

2.2) is a self-tuning approach based on the assumption that a second-order model is

an adequate representation of the actual dynamics of the robot and that variations

in the payload only affect the inertia values. The reference input is applied to the

robot arm to produce positions, velocities and accelerations of the links. The same

reference input is passed to the desired reference model and a desired position,

velocity and acceleration. The difference between the actual and the desired is

used to calculate a set of feedback gains that generate the torque required to

force the robot back to the desired trajectory. The model is assumed to be a

set of decoupled linear and time-invariant equations that are chosen to meet the

desired performance specifications. The MRAC approach does not require a priori

knowledge of any manipulator dynamic parameters or payload.

An attempt is made to address the unknown parameter problem employing

an adaptation scheme. The adaptive algorithm is used to adjust the feedback gains

and thus force the robot to perform like the assumed model.

Several different adaptation schemes have been proposed and evaluated in the

current literature [DD79,Ser87,LEA7]. All of those techniques are based on driving

the errors between some reference input and measured values asymptotically to

zero. No a priori knowledge of the payload or manipulator parameters is assumed.

The control systems are shown to be asymptotically stable by applying Lyapunov's
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second method [DH8i]. However, that form of stability, while extremely powerful,

does not guarantee that the response of the systems meets any sort of performance

optimality criteria. The MRAC approach also neglects system noises and uncer-

tainties such as encoder noise, gear backlash, initial misalignment of the links, and

mismodelling. An analysis of [DD791 and [Ser87] follows.

Dubowsky and DesForges first proposed the MRAC for robot control in

[DD79]. The payload and end effector were assumed to be part of the robot's

last link and the load was counter-balanced so that gravity was not a factor in the

system dynamics. A quadratic error function was used to minimize the difference

between the reference model and the actual system dynamics. A steepest decent

method is applied to the error function to find the equations defining the position

and velocity feedback gain adjustments. The adaptation scheme requires position

aiil velocity error information [DD79]. The acceleration error was set equal to

zero. The stability of the control system was determined by eigenvalue placement.
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Duhowsky and DesForges tested their algorithm in simulation for a three-

link robot. The proposed scheme performed adequately in the setup described in

rDD791. The adaptation scheme was able to adjust the feedback gains to meet

changes in the payload without any external excitation applied to the load. Exter-

nal excitation could be used to enhance the observability of the desired parameter.

There was a short period of tine that the errors were excessive when the estima-

tor was learning. Dubowsky and Kornbluh experimentally evaluated the proposed

sclheme using only the second link of a Puma 560 with a step input [DK851. The

reference model that was used assumed that there was no coupling between the

links, and the controller adapted only to changes in the self inertia matrix. The

significant inertia coupling [LS88a] between links was ignored. Leahy, et al. have

shown in rLeaA7bl that the position errors committed by the MRAC approach

are large and the vibration is excessive when the robot is simultaneously moving

mtiultiple links at high speeds.

Seraji proposed a MRAC approach that uses feedforward and feedback com-

pensation and a Lyapunov adaptation algorithm [Ser87]. The feedforward coipen-

sat or was based on a second-order equation designed to operate at a nominal point.

The feedforward element acted as the inverse of the robot model and was used to

linearize the system dynamics equations about that nominal operating point. The

gains in the feedforward compensator were adjusted as the robot moved along a

given trajectory [Ser87:page 194]. A Proportional-plus-Derivative (PD) feedback

controller was used to improve the tracking performance of the robot, and the

gains were adjusted to cope with changes in the operating point. Tile operating

point was established by adding a third input torque to the sum of the feedforward

aild feedback torques. This auxiliary input was a linear function of the position

and velocity errors. The coefficients of the auxiliary torque function were found

experimentally and represented the relative weighting between the position and

the velocity errors. The estimator was driven by the input trajectory and the error
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0 in position and velocity. The outputs of fhe estimator were the PD gains, the

coefficients in the feedforward element, and the auxiliary torque. No insight was

provided as to how to select the initial starting values of these parameters.

The control scheme proposed by Seraji was compared in simulation against a

nianipulator modeled by Equation (2.1). The robot was assumed to be a two-link

system with gravity acting in the plane of the links, with the payload modeled as

part of the last link. The initial auxiliary and controller gains were arbitrarily set

to zero. The results in ISer7] show that the actual joint positions closely followed

the coilmanded position.

A decentralized version of Seraji's proposed technique was experimentally

evaluated on a Puma-560 fSerSSI. The trajectories used were very slow (200 per

second commanded angular velocity), which eliminated any inertia coupling and

viscous friction effects (see Equation (2.1)). As shown in [Lea87b], slow trajectories

are not good tests of an algorithm's nerits because the nonlinear effects remain

negligible.

The MRAC method is based on a system model that does not include the

known dynamics of the robot. This approach also requires a slow trajectory to

keep the inertia coupling and viscous friction negligible.

2.5 Adaptive Control using an Autoregressive Model

Koivo and Guo have proposed an adaptive control meth- d based on an au-

toregressive model fK(;3. As with the previously reviewed methods [DD79,Ser87],

a second-order model was used to represent, the system dynamics, and the coupling

between the links was assumed to be negligible. The differences between the au-

toregressive and the MRAC approaches is concentrated in how the models were

utilized and the approach taken to estimate the unknown parameters. Instead

of a differential equation of motion as ill the MRAC, Koivo and Guo proposed a

seVond-order stochastic difference equation. The coefficients of the defining equa-



oti, were determined by a least-squares error curve fit of the reference input data

to the output data. The adaptation scheme does not require the controller to have

a priori information about the payload or the configuration of the manipulator.

A recursive algorithm estimated the unknown parameters at ti using the

sampled outputs at ti-1, conditioned on the measurement at ti. To account for

differences between the assumed model and the actual model, a noise component

was added. The noise was assumed to have a Gaussian distribution with zero

mean and a covariance of 4? [KGR3:page 164]. The noise addresses only model

uncertainty and the other system noises were not taken into account. The assumed

noise distribution was not substantiated. A more accurate model of the system

dynamics and better representation of other system noises are needed to improve

tracking performance.

Simulation of the proposed controller, agbiinst the same reference nonlinear

equations of motion that. Seraji employed [Ser88], showed that the output followed

the reference closely except when the trajectory changed directions. At such times,

the niodel output oscillated about the reference.

Koivo and Guo's autoregressive model control method was based on a system

iodel that does not include the known dynamic structure of the robot. This

method also requires the robot, to move slowly to maintain the assumption that

inertia coupling and viscous friction were negligible.

2.6 Adaptive Perturbation Control

The perturbation control approach linearizes the full set of nonlinear, coupled

differential equations of motion al out a nominal operating point [LC84,dVW87.

The noiniial system dynamics equations were then used in a feedforward compen-

sator to control the gross inotion of the rianipulator. A feedback compensator was

also emnployed to conipensate for siiall perturbations about. that nominal operating

point. The feedback compensator used full-state feedback and is defined by:
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6;i = Fbx + Abu (2.3)

where:

" = the perturbations of the states.

* F the Jacobian of the defining system dynamics equations.

* A = the Jacobian of the input distribution matrix.

" tu the perturbation control inputs.

A least-squares or recursive least-squares estimation scheme was employed to esti-

mate the unknown F and A matrices. The technique of linearizing the nonlinear

equation about a nominal operating point and then driving the system back to the

nominal is an approach often used for nonlinear control problems. In fact, this

research effort used the same tact. However, the approach proposed in [LC84] and

[dVW87] does not take into account any system noises and, as shown in [SLG78],

a least-squares or recursive least-squares estimation scheme will produce a biased

estimate of the unknown parameters if system noises are not properly modeled.

Lee and Chung utilized a Newton-Euler formulation of the manipulator dy-

namics in the feedforward component [LC84]. This provided for a quick and easy

solution of the nominal trajectory problem. However, it did require a priori knowl-

edge of a nominal payload and the configuration of the manipulator. The feed-

back compensator used the Lagrange-Euler formulation of the equations of motion

which permitted determination of the linearized perturbation equations. A recur-

sive least-squares estimation scheme was used to determine the parameters needed

in the feedback compensator. The parameter estimates were based on the differ-

ences between the input and output positions, velocities and accelerations. The

controller was then formulated as a linear quadratic control problem, optimized to

drive the perturbation states to zero at each iteration [LC84:page 245].
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Lee and ('hung's proposed scheme was compared in simulation to the com-

puted torque technique on a three-link robot [LC84]. The proposed approach

estimated the perturbation control input coefficients which were a function of the

payload. The reference controller was blinded to payload variations. The proposed

approach had smaller peak tracking error, smaller end position errors and required

less control energy during the trajectory, than did the uninformed reference con-

troller. What was not indicated in ILC84] was how the nominal trajectory was

computed. The common assumption is that the nominal operating condition is

the unloaded manipulator. The nominal is a function of the payload and should

be updated as the payload is changed, in order to keep the perturbations small.

A forgetting factor was used to deemphasize the old estimates since the model

used was not accurate enough to propagate the estimates forward over multiple

sample periods. The forgetting factor was determined by numerous simulation

runs. No experimental evaluation of the proposed technique has been performed,

S perhaps because of the large computational power requirements.

deSilva and Van Winssen in [dVW87] used the same basic approach of a

nominal feedforward component and a perturbation feedback component with the

same linear quadratic controller as [LC84J. The difference was that deSilva and

Van Winssen used a precomputed gain matrix for the feedback compensator. As

the manipulator moved along its trajectory, the appropriate gains in the controller

were switched in and out. Input disturbances were handled by adding a disturbance

torque, and model errors were handled by adding an error to the model parameters.

Both sources of error were assumed to have a zero mean and a standard deviation

of 7% [dVW87:page 1071, but no information was given as why 7% nor the type of

distribution used.

deSilva and Van Winssen's proposed approach was simulated on a two-link

robot, and the tracking errors were compared for runs with and without the feed-

back elemeiit in the controller. As expected, the proposed control system had diffi-
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0 culty following the desired trajectory using only the feedforward element. Adding

the feedback element to the controller significantly improved the tracking ability

of the control system.

However, as was the case with [LC841, the feedforward element needs to have

payload information in order to keep the perturbations small. Both [LC841 and

[dVW87] need to include more information in the system models about the noise

found in a real robot to reduce estimation errors. Without a more accurate system

model, the actual performance of the adaptive perturbation controller cannot be

fully assessed.

2.7 Model-Based Control

Model-Based control can be adaptive [CHS87,SL87a,AAH86,MG86,LS88J or

non-adaptive [Lea88a,LS88a]. A more common name for the most general form of

the non-adaptive model based control method is the computed torque technique

[CraR61. Both adaptive and non-adaptive approaches require control torques to

be generated based on the dynamics model of the manipulator, and both adapt to

changes in the configuration of the robot. The adaptive versions of the model-based

method adjust to changes in the payload as well.

Dynamic compensation is employed in the model-based controller to reduce

the effect of the disturbances caused by differences between the modeled system and

the actual system. The compensation typically takes on the form of a feedforward

component that linearizes the equations of motion (see Figure 2.3) by compensating

for gravity acting on the link; the coupling of the torques between the hnks of the

robot; and the effects of the centrifugal forces generated as the robot is moved. The

feedforward compensator is given the desired trajectory and produces a nominal

torque. The nominal torque is applied to the robot arm and the manipulator moves

along a trajectory. Tile difference between the desired trajectory and the actual

trajectory is used by the feedback compensator to produce the torque required to
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Figure 2.3. Typical Model-Based Control System

drive the error to zero. The feedforward element requires knowledge of the payload

and friction in the system. It also requires that the commands to move the robot

include not only the desired position but also the desired velocity and acceleration

along the trajectory. Luh demonstrates in [Luh83] that proper compensation can

improve the performance of the robot for a given task. The feedback element is

used to reject any disturbances and reduce the tracking error of the robot.

The computed torque scheme begins with Equation (2.1) as the torque re-

quired to move the link along a given trajectory. The movement of each link is

des;cribed in a coordinate frame attached to the robot defined by the Denavit-

llartenberg representation FGL87]. The defining equations of motion of this me-

chanical structure is a set of nonlinear, coupled differential equations expressible

in a Lagrange-Euler or a Newton-Euler formulation.
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If the desired trajectory information is assumed to be known the desired

control law can be written as:

T8 (t) = D,(q, a)[i+d + K, + Kpe] +/3. (2.4)

where the subscript a denotes actual and:

@ = desired acceleration vector.

9 e = position error vector(qd - q).

* e velocity error vector.

* K,, = velocity error n x n diagonal gain matrix.

* Kp = position error n x n diagonal gain matrix.

e 13. = h,(4, q, a) + N 2 B,.,, + r0,, + g.(q, a) (from Equation (2.1)).

By equating Equations (2.1) and (2.4) and assuming that the modeled dynamic

terms equal the real manipulator dynamics, the result is:

D.,(q,a)[ + K,, + Kpe] = 0 (2.5)

In Equation (2.5) the inertia matrix is always positive definite. Therefore

the bracket term must equal zero and the error states asymptotically approach

zero. K, and K are diagonal and the bracketed term produces a set of linear

second order perturbation equations with their poles in the left-half plane. The

implementation of this set of equations puts the pole placement at the discretion

of the designer.

The computed torque technique was experimentally evaluated in [Lea88a]

and (LS88al for vertically articulated manipulators and in [Kbo88), [AAH86 and

IAAII8A] for serial-link direct-drive arms. The feedback gains used were experi-

mentally determined. The results showed in all cases, when a complete system

2-14



dynamics model which, included payload information, was used for the control of

a manipulator, the tracking of the robot was superior to tracking when the com-

pensator did not include the true payload information. Because the feedback gains

were high to reject disturbances, the controller was very stiff. Most robot applica-

tions desire both tracking performance and minimum compliance. Low compliance

is desirable to improve the interactions between the robot and its environment.

The model-based control system would have to adapt to changes in the payload

if the non-adaptive approach were to be implemented in a changing environment

tLeaqsa,AAH85].

One problem with the computed torque approach is the need for payload

information. Leahy has shown that when the payload is known and the controller

is tuned to match the payload, the performance of the robot is greatly improved

[Lea Sa]. A model-based controller can only adapt to changes in the configuration

of the robot. In a changing environment the payload may not be known. This can

be overcome by using an adaptation algorithm to estimate the payload and other

required parameters and formulating the feedforward compensator to use these

estimates. Figure 2.4 shows a block diagram of how a typical adaptive model-

based control system might look. The addition of the estimator to the model-

based control system takes the error in the position and produces an estimate of

the unknown parameter. The estimate of the parameter is used by the feedforward

compensator to produce a more accurate nominal torque. The feedback gains could

also be recomputed using the parameter estimate. As with the MRAC approach,

various parameter estimation schemes have been used to fill the estimator block.

The following adaptive model-based control schemes employed the basic computed

torque approach discussed above and adjusted the feedforward and/or feedback

elements on-line to match the payload.

Craig, hIsu, and Sastry proposed to use tracking errors in the joint posi-

tions and velocities to drive the estimator for the mass and the feedback gains

O
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Figure 2.4. Example Adaptive Model-Based Control System

0 (CHS87:page 16]. The control scheme required joint accelerations, which cannot

be measured; an adaptive feedforward element made up of an estimated "mass

matrix" [CHS87:page 18] which must be inverted; and an adaptive feedback ele-

ment. The adaptive scheme was based on a Lyapunov stability approach. The

basic adaptation law was given by:

. = rhT I-'E '  (2.6)

where:

9 F = r vector of the parameters to be estimated.

* F = r x r diagonal scaling matrix.

*h = r x n matrix of dynamics terms and is h(4, q, a).

* A' = the estimate of an n x n manipulator mass matrix.

0
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0 E' = "-vector of servo errors(,:, e).

The solution of Equation (2.6) for the bounded initial condition on F" pro-

vides the update for the unknown parameters [CHS87:page 20]. Lyapunov theory

guarantees that the controller will be stable and that the steady state errors will

asymptotically approach zero. However, in most trajectories of interest, the desired

acceleration is not zero and therefore, the manipulator is not operated in a steady

state manner. To improve the tracking performance of the manipulator, r must

be adjusted experimentally to produce a control system that meets the desired

performance. Adjusting r trades peak error in tracking for speed of adaptation.

The experimental results on the first two links of al Adept One manipulator

showed good performance [CHS87]. However, the trajectories used were slow and

near constant acceleration. The estimates of the parameters appeared to be biased.

If more of the system uncertainties were included in the system model, the estimates

would be more accurate.

Middelton and Goodwin employed the same tracking error states to drive the

estimator and a nearly identical Lyapunov adaptation scheme as Craig, et al., but

required the inversion of the joint inertia matrix in their estimator [MG86:page

691. This could lead to problems because of computational time and the fact that

the inertia matrix can become singular due to numerical rounding in the computer.

No simulation or experimental results have been presented.

Slotine and Li used only tracking errors and joint positions and velocities

to drive their estimator [SL87a:page 49]. The main concern of their proposed

approach was how to reduce tracking errors, and not how quickly the estimator

converged. The adaptation scheme was based on Lyapunov theory and was nearly

identical to the one used by Craig, et al. The exception was that the adaptation

law was a function of the required joint velocities and accelerations instead of the

desired quantities. The required velocities and acceleration are those values that

2
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0 drive the steady state position errors toward zero. The constant r matrix was

adjusted with different performance goals, i. e. reducing steady state position error

as apposed to reducing the tracking errors.

Simulation results shows that the convergence was slow but the tracking error

was small. The proposed technique was experimentaly tested on a two-link semi-

direct-drive robot arm [SL87b]. Gravity was not a factor due to the arm movements

being restricted to the horizontal plan. The trajectories used consisted of .5 sec of

movement and then .5 sec of zero velocity and acceleration. The results presented

indicate that the adaptive control scheme has large tracking errors at the end of

the first .5 sec interval. The errors were reduced during the next .5 sec interval

but not driven to zero. Slotine and Li indicated that the remaining errors were

largely due to noise corrupted velocity measurements [SL87a:page 13961. In any

case, the need to have a long stationary period at the end of the moving trajectory

to reduce final positioning errors is not acceptable for telepresence applications.

Li and Slotine have also developed an estimation technique that was driven

by the errors in the predicted values of the integral of the joint torque [LS88b].

Because filtered value of the torque are utilized in the estimator, joint accelerations

are not needed. Four different adaptation schemes have been proposed, all based

on a Lyapunov stability criteria. No simulation or experimental results of the new

technique or the adaptation schemes have been presented as yet.

2.8 Summary

A review of current control schemes for robots has been presented. No sin-

gle approach meets the performance needs for all applications. The model-based

control scheme has shown superior results when the payload is known a prior.

Much has been gained in the area of robot control by current research; how-

ever, for the high performance robots needed in todays Air Force the simplifying

assumptions used in the present control approaches are overly restrictive. There
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is not enough information available on proposed adaptive model-based control

schemes and therefore further investigations are justified. The control scheme

advanced in this thesis will be all adaptive model-based approach that will at-

tempt to account for all the system noises and uncertainties. The estimation

scheme will provide an estimate of the unknown payload to the feedforward com-

pensator. An algorithm used in difficult nonlinear estimation applications which

incorporates system and measurement noises is based on a Bayesian estimation

approach. The algorithm is called Multiple Model Adaptive Estimator, MMAE

[DM87,KB83,LJ87a,MZ85,MR83,MS85,Net85,BG78,Aea77,Ber83,May82a, MH87,

GW80,WW71]. The development of the MMAE and the resulting structure of the

adaptive model-based control is presented in the following chapter.

0
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IlL Algorithm Development

3.1 Introdu.'tion

There are many control algorithms currently under study to improve the

tracking capabilities of the modern robot. The previous chapter presented a re-

view of current approaches. The model reference technique assumes a second-

order model for the robot but discards any knowledge of the mechanical struc-

ture of the robot. The coefficients of the second-order model must be estimated

rDD79,Serg7,Goo85J. The adaptive perturbation controller assumes a constant

feedback plant and uses an on-line estimation scheme to provide the coefficients in

the feedback element [LC84,dVW87]. The model-based approach uses the knowl-

edge of the structure of the robot [LJS8b,LJS88,CHS87,SL87a. For tracking ap-

plications, knowledge of the payload is also required and in general is not known.

S None of the mentioned techniques inicludes system and measurement uncertainties

iii their models of the robot system.

Chapter 2 discussed the model-based controller. It uses the nonlinear equa-

tions of motion in a feedforward element to compute the desired torque (see Equa-

tion (3.1)). Any mismatches between the model in the feedforward element and

the actual robot are considered disturbances. A PD controller in a feedback loop is

used to reject these disturbances. A large contribution to the disturbances in the

system is the payload which consists of the mass, the center of mass, the radius of

gyration and the moments of inertia (see Equation (3.1)).

[D(q,a) + N MJ4 + h(q,q,a) + N'B,4 + T, + g(q,a) = NT(f) (3.1)

* where the variables are the satie as in Equation (2.1).

0
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Figure 3.1. Adaptive Model-Based Controller

0 To reduce the disturbances in the system and to improve the overall tracking

performance on-line, the parameter a must be estimated. One estimation technique

used in many robot control schemes is based on Lyapunov's second method. This

approach only guarantees that the system response will be asymptoticly stable.

Another technique used a least-squares approach. However, without noise in the

model, this estimator is biased [SLC78.

Our proposed solution is to combine the Multiple Model Adaptive Estimator

(MMAE) with the model-based controller. The MMAE can provide better perfor-

niance than the Lyapunov or least-squares approaches and it accounts for the noise

in the robot system. The structure of t he adaptive model base controller is shown

in Figure 3.1. The overall control system has been called the Multiple Model-Based

Control (MMBC) because the control system incorporates multiple models of the

r,,bot dviamics iii the "estimat or" block. The algorithl will be developed in this

chI apt er.
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3.2 No./itroar E.,flynatioll

The nonlinear equations of motion (see Equation (3.1)) can be written in a

m, ore general form (see Equation (3.2)).

i(I) - f(q,j,T,a,z,f) (3.2)

z(t) = h(q,4],T,a,1) (3.3)

w htere:

" z(t) = measurements

" f(o) and (e() - are notlinear functions of the arguments

As pointed out. in the Chapter 2, the robot system has noise inherent in it.

The sources of the noise arise from imperfect calibration of the robot, incorrectly

mo(eled components of the robot, and imperfect measurements of the states. If the

noises are assumed to be added linearly to Equations (3.2) and (3.3), the result is

a stochastic nonlinear differential equation and associated measurement algebraic

equation of the following form 1May79]:

4i(t) = f (q, q, T, a, z,t) + G'(t) W(t) (3.4)

z(t) = h (q, 4,T,a,t) + V(1) (3.5)

where:

* C"'(1) Scaling, mat rix for tihe additive noise

@ I'(/) -Zero mean, white Gaussian dynamics driving noise

• V(t) =Zero mean, white G aussial mieasureneiit noise
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O.le solution to Eqiiation (3.4) for lie case where the noises are assumed to

have Gaussian distributions is the Extended Kalman Filter ([May82a:pages 44-55]).

This approach would require ai to be included as states of the system. However,

sinice a is slowly time varying compared to the states of the system it can be

considered as a parameter and treated differently than the more rapidly varying

states.

If the structure of the Multiple Model-Based Controller is used (see Figure

3.t), the control system can be separated into a feedforward compensator that

produces a nominal output and a feedback element that produces a perturbation

output. The motivation for this approach is to recast the problem into a per-

turbation regulator (see Figure .3.2). If the noise is assumed to contribute to the

perturbation output, Figure 3.3 shows the structure of the resulting system. The

feedforward element produces a nominal torque given the desired trajectory. The

nominal torque applied to the robot generates a nominal position. Any difference

between the nominal and the desired position is assumed to result from the dis-

turbances in the system, TV. The feedback gains, K attempt to drive the errors to

zero. The perturbation system description, F'(a, t), is the first-order result of the

truncated Taylor series of f(q,q, T,a,t). The states of the controller then become

the difference between the desired position and velocity and the actual position

and velocity:

x(t) [ position error vector 1 (3.6)
velocity error vector J

The noises directly affect Y(') and the measurements of the states. The

systemi noises are assumed to be zero mueani, white anid to be pair-wise independent

of each other. The measurement noises are also assumed to be zero mean, white

and to be pair-wise independent, and to be iiidependent of the system noises.

3-4



K (a, t)

Figure 3.2. Perturbation Controller With Noise

The feedforward and feedback elements are dependant on the parameter a.

Equations (3.4) and (3.5) can be written in the form:

.i(t) = F'(a,t)x(f) + G(t)W(t) (3.7)

z(t) = H(t)x(t) + V(t) (3.8)

where:

SF'(a, t) = a nonlinear function of the payload and a linear function of the

states that describes the homogeneous perturbation state dynamics charac-

teristics.

" z(f) the noise corrupted measurements of the position error states.

" 11(t) the mieasuremiiet i matrix that transforms the states into the measure-

nient space.
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Figure 3.3. Feedforward Element with Perturbation Controller

" V(I) the measurement noise.

" IV(I) the dynamics driving noise

" G(t) transforms the noise into the state space.

With Equations (3.7) and (3.8), Bayesian estimation in a multiple model

configuration can be used to determine the unknown parameter a [May82a:pages

129-1361. The basic premise of the Multiple Model Adaptive Estimation (MMAE)

technique is that the continuous parameter a can be discretized, and thus can be

assumed to be a member of the finite set of possible values, (a,, a 2 , ... , aK). The

discretization of a must be large enough that there is a discernible difference be-

tween the models but not so large as to induce unacceptable errors in the estimate.

The state estimator or Kalman filter based upon an assumed parameter value ai

and the imodels of (3.7) an( (3.8) in a sampled data system would be:
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(t; = * t +, ti) t,)(3 .9 )

P(tr) ( t)P( + ) 4 T(t+,,) + Qd(ti) (3.10)

'(+ )  i(f.) + K(t,)[z,-//(ti)i (t -)] (3.11)

P(t') P(11)- K(ft))H(t,)P(I[) (3.12)

K(ti) P(ts )HT[H(ti)P(t )Hr(t) + R(ti)]-' (3.13)

where:

" i('t) the estimate of the state at time ti just prior to the measurement

being processed at ti.

" P(ts-) =the covariance of the state at time It.

" zi = the noise corrupted measurement (in this

case the position error state).

" H(i) = the measurement matrix that transforms the states into the mea-

surenent space.

" +(t + ) = the state at time ti after the measurement has been processed at ti.

" P(t') =the covariance of the state at time It.

" K(ti) = the Kalman filter gain at time ti.

" P(ti+1, ti) = the state transition matrix associated witih F(a,t) of Equation

(3.7), defined as the n x n matrix that satisfies $(t, ti) = F'(a, t)4$(t, ti) with

fI) = I.

" Qd(ti) = f,'_ (ti+1,r)G(-r)Q(r)GT(r),pT(tI+ir)dr and Q(t) is the strength

of the Gaussian noise, W(t):

E[W(f)W T (I + r)] = Q(f)6(r).

" R(t,) = the strength of the Gaussian noise, V(ti): E[V(ti)VT (t,)] = R(ti).
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0 If a has been discretized into K different in- vectors, the MMAE would

require K such linear Kalnan filters to be run in parallel. Figure 3.4 shows the

structure of the algorithm. Each of the Kalman filters is presented with the same

measurement z(fi) and produces a state estimate based upon its internally assumed

model. Also computed as part of the estimation process are the residuals, r(ti).

The residuals are passed to an executive program that computes a conditional

probability, pk(t,) (see Equation (3.15)). The smoothed state estimate, i(t,) is the

sum of the products as indicated in Figure 3.4.

The residuals, [zj - H(t,)'(f- )], friom tie filter with the most correctly as-

sulned value cf a, would be the smallest relative to its internally computed residual

covariance, [HPHT + R]. In effect, the state estimates that were propagated for-

ward in time using the most correct, state model, most closely match the actual

measurements of the states at ti.

0
pk(ti) _ prob{a = ak IZ(fi) = Zi} (3.14)

f.(t,,ljz(t,,(zi I nk,Zi-i)Pk(fi-1)
fz( t,) a,Z(t , )(Z I oj, Zi- )p j(ti i)

where:

" Z(ti-1 ) = the measurement history up to time ti-

" f,(t,)I,z(t,_,)(zi I ak,Zi_1) = the conditional probability that the rtH fil-

ter was correct. For the assumed Gaussian distribution it has the form

1l e( - 1/2-'A - 'r) where A = [HPjI + R].
(2#),,/Iz/,

2
.

* the denominator scales the conditional probability such that E= pk(ti) = 1

The conditional mean of the parameter a at t, is given by:

K

I, - N' akpk(,) (3.16)
Q k=1
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Figure 3.4. Block Diagrami for the Multiple Model Adaptive Estimation Algorithm
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0

Figure 3.5. Block Diagram for the Multiple Model-Based Control (MMBC)

For a more detailed development of the MMAE algorithm see [May82a:pages 129-

1361.

The next chapter will use the Multiple Model-Based Control scheme (MMBC)

developed here. The estimator in Figure 2.4 has been replaced with the MMAE

(see Figure 3.5). The MMBC algorithm was employed for a case study on the

first three links of the PUMA-560. The algorithm was tested in simulation and

experimentally with very promising results.
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IV. Case Study

The previous chapter developed a Model-Based Controller with Multiple

Model Adaptive Estimation (MMBC). This chapter addresses the details of im-

plementing that algorithm for robot control and uses a PUMA-560 as a case study.

It will also discuss the evaluation of the plant or F(a, t) matrix, the PD controller

section, implementation of the Kalman filter, the MMAE and the simulator used

to test the algorithm. In addition, experimental results of the new control scheme

for the PUMA-560 testing are presented.

4.1 Introduction

One objective of this research was to demonstrate the potential of the MMBC

technique for robot payload estimation and control. The PUMA-560 was selected

as the case study because it is representative of a vertically articulated manipulator

needed for telepresence applications. Tracking performance of the PUMA has been

experimentally determined to be greatly affected by changes in the payload.

The nonlinear equations of motion (see Equation (2.1)) were reduced in the

previous chapter to a nominal part plus a linear perturbation part (see Equation

(3.7)). The state estimator based on the linear stochastic differential equation (see

Equation (3.7)), was given as Equations (3.9)-(3.13) (the Kalnan filter equations).

For application on the PUMA-560 robot, the details of those equations and the

conditional probability calculations (see Equation (3.16)), must be discussed.

The first 3 links of the PUMA-560 were used in the case study since rehucing

the payload vector to just the nass has minimal impact on the large link tracking

performance. The payload was assumed to be a point mass rigidly attached to the

end of the third link, and the MMAE is to provide an estimate of the mass of the

payload. The single parameter of the payload, reduces a to the scaler case and

decrease the number of filters needed in the MMAE to span the parameter space.
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If additional ])aranieters of the payload are to be estimated, the size of the MMAE
p

would be increased. Another reason for limiting the case study to the first 3 links

is i hat the control of the last 3 links can be decoupled from the first three, because

inertia coupling forces between the two sections are negligible [Lea87a].

4.2 Perturbation Equations

The process of going from Equation (3.5) to Equation (3.8) requires the par-

tial derivative of Equation (3.5) with respect to q and 4, evaluated at the nominal

q q, r, aj:

0 0 0 1 0 0

0 0 0 0 1 0

F 1 0 0 0 0 1

F,(a, t)=_o _ _ ! _
Oq/l I ,2 O 

0
1q 2 

0
3

A hl 'a '- aj A U, A,')ql aq2 Oq3 041 (942 O943

q' dq2 ' 0q3 ;; z4 :: nominal

The configuration of the control system shown in Figure 3.3 represents a

full state feedback regulator. The model of the plant used by the Kalman filters

should reflect the actual plant as closely as possible. Therefore the plant matrix

used by the Kalman filters should include the feedback gains. This approach to the

estimation task allows the feedback loop to remain unbroken and the characteristics

of the original closed-loop system to be unchanged. The alternative would be to

include the MMAE as part of the feedback loop. The model of the closed loop

plant matrix is:

l'j (a,t) = (F;(a,t) - G(a,t)K) (4.2)

Further definition of the Jth Kalnian filter is required. The G(a, ti) matrix

4 in Figure 4.1 determines how the dynamics driving noise, W(t) affects the states
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v(1

(a, ) -J

Figure 4.1. Perturbation Controller with Noise

of the controller. The W(t) is assumed to be added to the torque applied to the

robot. The matrix G(a, ti) transforms tie torque into the state space. It has the

form:

0 0 0

0 0 0
G(a, ti) =(4.3)

0 0 0

D -1 (q, a) nominal

where D-(q, a) is the inverse of the n x n inertia matrix, D(q, a) from Equation

(3.1).

The only measurements available on the PUMA-560 are the actual joint

positions. The position state in the Kalnan filter is the difference between the

desired position and the actual position (see Equation (3.6)). The H(ti) matrix
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scales the state vector x(fi) to match z(I,). Since z(ft) is a linear f,,nction of the

position states,

100000

H'(1,)= 0 1 0 0 0 0 (4.4)

00 1000

The actual calculation of Equation (4.1) is quite complex even for the first

3 links of the PUMA-560. To assist in evaluation of Equation (4.1), a commercial

software package that works with symbolic equations call MACSYMA was used

[Sym85]. A program using MACSYMA commands was developed to provide a

symbolically reduced evaluation for Equation (4.1) (see Appendix A for program

listing). The equations of motion for the first 3 links of the PUMA-560 developed

by Tarn in [TB85] were fed into MACSYMA. The friction information included in

the equations of motion was developed by Leahy and Saridis in [LS88a].

For the MMAE routine to provide a good estimate of a there must be a

measurable difference between the system models based on different values of a.

One means of assessing the differences in the plant is to examine the F(a, i) ma-

trix as a changes. An evaluation of F(a, t) had not previously been presented in

the literature, therefore an analysis was performed. A test trajectory that would

highlight the tracking performance dependence on a was selected. The position

and velocity every 7 ins along the trajectory was used to calculate the values of

F(a, 1). The choice for 7 ins was estabfished because of the experimental setup and

will be discussed in Section 4.8. Two payload conditions, 0.0 Kg. and 5.0 Kg. were

selected to provide upper and lower limits of possible payload values. Tile payload

was added to the existing load of links 4, 5 and 6, whose total unloaded weight is

6.97 Kg. [TB851.

The real part of the eigenvalues of the F(a, 1) matrix were used as a measure

of the differences between F(a, 1) for different payloads. The real part of the eigen-
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va ies was selected as a convenient gaiige of the response of 1he various modes of

the system. Tile trajectory selected was fast enough that the nonlinear character-

istic of the robot were excited. The trajectory is shown in Figures 4.2, 4.3 and 4.4

for each of tile three links. The real parts of the eigenvalues at each point along

the trajectory for the two payload cases are shown in Figure 4.5 for eigenvalues

1-2, Figure 4.6 for 3-4 and Figure 4.7 for 5-6. The numbering of the eigenvalues is

arbitrary but an attempt was maintain the numbering between the different load

ctses.

As seen in Figures 4.5, 4.6 and 4.7, there is a slight difference between the

models. It can also be seen that F(a, t) is it constant in time and therefore

miiust be re-computed along the trajectory. This thesis investigation pre-computed

J(a, I) at each point along the trajectory. An alternative approach was not in-

vestigated and was beyond the scope of this effort. Eigenvalue plots for a faster

trajectory (Trajectory Three, see Figures B.5, B.6 and B.7 and a holding or zero

trajectory (Trajectory Two, see Figure B.1) call be seen in Appendix C (Figures

B.8, B.9,B.10, B.2, B.3 and B.4). It is apparent by comparing the eigenvalue plots

for tle three trajectories that the amount of change of P(a,f) depends on the

speed of the trajectory. A constant. F(a, t) can only be assumed if the trajectory

employed is significantly slower than Trajectory One.

4.3 PD Controller

The feedback controller shown in Figure 3.2 is used to reduce the tracking

error of the robot. A PD feedback loop was selected as a simple but effective

controller to reject (listurbances caused by errors in the model of the robot struc-

tire and inimodeled forces. As seen in Chapter 2, when the feedforward element

correctly models the condition of the robot., tile resulting feedback element is a

socoi([-order system:

0
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Figure 4.5. Eigenvalues of F(a, t) Matrix for Trajectory One
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0
D(q,a)[i + K.e + Kpe = 0 (4.5)

The gains for tile PD loop were selected to provide a critically damped re-

sponse to a step input for the case of minimum inertia. This will insure that the

robot will be overdamped if tle inertia increases. The system poles were selected

to be at .5 = -10.0. This value of frequency response was experimentally deter-

mined to provide a quick response with minimum vibration of the robot. Leahy

and Saridis present in [LS88a] that PD gains for a given link can be selected by

the following relationships:

K. (J,n;,2(w,, - B 4ff)/nK, (4.6)

2 , minnlf (4.7)

where

" C = the link damping ratio.

Swn, = the link natural frequency.

* Jmn =the minimum effective inertia of the link.

• A7, = the stepping motor count to torque conversion number.

" Bef = as previously defined.

For details on this development see [LS88a]. The values for Ip and K, used in tis

research are tabulated in Figure 4.8.

4.' K'ahnanl Filler

The Kalman filter equations were developed in the previous chapter for the

general case and are presented here to facilitate further discussion on the imple-

mentation of the filters in Figure 3.4:
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,I T ]'osition Gains Velocity Gains
q Link 1 250.0 1 72.0

p Link 2 520.0 129.0
SLink 3 95.6 1 24.8

Figure 4.8. PD Gains

(4.8)
P(7) = 4( t1+,t)P( 1±) 4 ,T(t+, ,) + QI(ti) (4.9)

,t)= i(f-) + K(fi)[zi - H(ti).i(f-)] (4.10)

P(ti+) =P(tt7) - K(ti)lt(ti)P(I,) (4.11)

K(t,) = P(t-)HT[H( )P(t )HT(f) + R(ti)]- ' (4.12)

Some simplifying assumptions were utilized to facilitate the realization of

the filters. As previously stated, the dynamics driving noises for each link were

assumed pairwise independent and independent of the measurement noise. The

first assumption was made to get the probl :n started. The second assumption is

reasonable since the position encoders have very little to do with the torque applied

to the robot. The measurement noise for each link was assumed to be independent

of each other since there are different encoders for each link. The noises are also

assumed have constant strength throughout the trajectory.

The value used for the covariance of the measurement noise, V(ti), was de-

termined friom the resolution of the encoders. The probability density function of

the noise is uniform with zero mean and a standard deviation equal to 1/2 the

square root of resolution of the encoder. The noise distribution was approximated

by a Gaussian distribution with the same statistics.
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The dynaiiiics driving noise strentgil1, Q, was adjusted using Trajectory One

to provide the best performance of the MMAE. As a first attempt at modeling

the uncertainty in the system, the noise was assumed to be not greater than 10%

of the peak perturbation torque generated during the trajectory. The effects of

this assumption will be addressed in the Recommendations section. Once Q was

selected, the value was used for all the trajectories.

The F(a, t) matrix does change during the trajectory; however, the sample

period of the controller is short enough that F(a,t) is assumed to be constant

over the sample period. The same is true of G(a, t). With F(a, t) constant during

the sample period and the sample period being short, the state transition matrix,

f(ti, ti ) is approximated by:

(ti, ti_,) -- I f F(ti)At + 1/2F'(fi)At' (4.13)

where At is the sample period. Similarly with Q held constant, Q4 (t,) is approxi-

mated by:

Qd J , )G( )OG T( ) t(Ii, ) d ; G(f,)QGT (fi)At (4.14)

The robot was started from a known position and the error was assumed to be

zero ( '(to) = 0 ) with probability 1 ( J'(to)=0 ).

4.5 Parameter Discretization

The parameter a represents the external payload of the robot. The range

of the payload was assumed to be continuous between 0.0 Kg. and 5.0 Kg. A

procedure outlined by Maybeck May,8] ,liscretizes the parameter space such that

the different Kalman filters will be based on sufficiently difrerent models that the

M MAE cati clearly separate the "good" model from the "bad". The technique
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basically varies the true parameter away from the filter assumed reference point

util the RMS value of the residuals, [zi - H(ti)i(ti )] in the reference Kalman

filter increases by 10% or more. An optimal technique for the discretization of a is

beyond the scope of this investigation and is under investigation as a separate issue

|Sie88. There is a tradeoff in the number of Kalman filters needed to discretize

the parameter space and the amount of on-line calculation required to process all

of the filters in one sample period. Previous PUMA research suggested that three

levels of discretization is reasonable. The parameters for the filters were set at 0.0,

2.5 and 5.0 Kg. This choice spans the payload possibilities of the PUMA-560 and

keeps the computational time reasonable. If the upper limit of a were increased, the

discretization wouldl be different and the number of filters would also be increased.

4.6 Simulator

The Multiple Modeled-Based Control (MMBC) technique was validated and

0 tested by digital simulation. The simulator used a fourth order Runge-Kutta rou-

tine with a 1 ins subinterval to solve Equation (3.1) [Wir87] and simulated the

act nal arm motion. The values for the friction coeflicients were determined exper-

imenitally for the PUMA-560 by Leahy and Saridis [LS88a. The dynamics driving

noise was simulated as zero mean, white Caussian noise of strength .01 and artifi-

cially injected into Equation (3.1) as shown in Figure 4.1. Measurement noise was

simulated as zero mean, uniform noise with a variance of 1 x 10' and added to

the position measurements. The means and covariance for the noises were selected

for the same reasons as the initial values of Q and R.

Joint positions, velocities and accelerations which constituted a desired tra-

jectory were precomputed amd given to the feedforward element. The nominal

torque out of the feedforward element plus the perturbation torque from the feed-

back elemeit was applied to tle siiulator (see Figure 3.5) and the solution to

Equation (3.1) was computed for the next sample period. The resulting noise cor-
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rupted position was subtracted from the previous position measurement and the

difference divided by the sample period to produce an approximation for the ve-

locity (see Equation (4.15)). A single difference approximation was employed to

be consistent with the previously developed model-based controller [Lea88b].

PO316 0I1ew -PO 3ii oll d (4.15)
at

The error states are formed and fed into the PD controller and the MMAE

as measurements. The perturbation torque out of the PD controller was added to

the nominal torque for the feedforward element and applied to Equation (3.1) for

the next sample period. This continued until the trajectory was completed. See

Figures 4.2, 4.3, 4.4 and Appendix C for plots of the trajectories used.

4.7 Software

0 A large part of this research effort was devoted to the generation of the

FORTRAN code necessary to implement the Model-Based Multiple Model Adap-

tive Estimation (MMBC) control algorithm. Appendix A has abstracts from the

FORTRAN routines used. A complete listing of the source code can be found in

The software effort began with the development of the routine to produce

F(a, 1) of Equation (4.2). MACSYMA was used to reduce the equations of motion

and to provide the FORTRAN code. The FORTRAN routine gave the values of

F(a, f) at each point along the trajectory. A simple MATRIXx [Int88] routine was

written to produce the real part of the eigenvalues of F(a, t).

In a parallel effort, the FORTRAN code for a single Kalman filter was devel-

oped. A program to assist in a covariance analysis on the filter was also written.

Once the single Kalmnan filter was tested, the next step was to discretize the pa-

ramneter space. To do this, the MMAE had to be integrated with the simulator.

0
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A flow chart of the simulator is shown in Figure 4.7. The basic simulator was

a] ready available, but noises had to be incorporated into the system model and the

integration of the MMAE routine had to be accomplished.

The first step in the simulator program was to initialize the Kalman filters

and to load the preconiputed F(a, t). Then the trajectories for the three links were

loaded and the program entered the main loop. The loop consisted of calculating

the inertia matrix, D(q,a) of Equation (2.1), and finding a payload estimate from

the MMAE. With the payload estimate, the program calculated the nominal and

perturbation torques and applied them to the simulated robot. The arm was moved

forward in time until the next sailple period by the solution to Equation (2.1).

The desired position was subtracted from the simulated position of the arm at the

end of that sample period to form the error states. The loop continued until the

trajectories were completed.

Inside the MMAE subroutine, Equations (3.13) and (3.15) were solved to

produce the payload estimate. The FORTRAN code for these subroutines was

also developed as part of this thesis research.

4.8 MMA E Tuning

The procedure used for tuning the filters in the MMAE was outlined by

Lashlee [Las87] and Netzer [Net85J. For this case study, the MMAE consisted of

filters based on a being 0.0, 2.5 and 5.0 Kg, as previously mentioned. The goal of

the tuning effort was to adjust the noise strengths Q and R to extract the best

perfrniatice of the individual Kalzian filters in the MMAE. Q was held constant

for each filter and R was varied to achieved the smallest residuals. Then R was

held at that value and Q was allowed to change until the residuals were minimized.

Q was kept small to keep the niodel diflerence apparent since as Q increases, the

Kahuan filter places more emphasis of tlie incoming measurement and less on the

propagated state.
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The analysis of the residuals of each filler showed that, when the external

load matched the controller's assumed load, the residuals based on 0 Kg. were

siiallest. In this situation the conditional probability calculations for i would

indicate that 0 Kg. should be the estimate of the payload out of the standard

MMAE. As previously indicated, when the feedforward element matches the true

configuration of the robot, the result is a linear, second order system. This second-

order system has very little dependence on the external payload. Hence, the MMAE

cannot distinguish between the different filters.

The small changes in the feedback element caused by changes in the payload

as well as other miss-modeled terms in Equation (2.1) appear as disturbances and

are rejected by the PD controller. Since the F(a,t) matrix was based on the

closed loop system as shown in Figure 4.1, when the external payload matches

the controller's value for payload, there is no significant difference between the

system models in the MMAE. This was apparent by the weak dependence of F(a, t)

on the parameter a. Only as the external payload is allowed to change from

the controller's value is the differences between the models apparent. Then the

residuals in the MMAE reflect the difference in the true payload and the internally

assumed value of the payload. The parameter in the MMAE is a delta mass instead

of the actual value of the mass of the payload. This is not the previously publicized

operation of the MMAE. The MMAE typically estimates the actual parameter, not

the difference in the between the assumed value and the true value. The filters

iii the MMAE were re-tuned with the goal to minimize the residuals when the

difference between the external payload and the controller's value for the payload

matched the filters dcltIa a,.

The sign of the residuals is positive for the case when the external payload is

larger than the controller's value for the payload. rhe positive sign indicates that,

during a sample period the actual states of the system are propagated farther than

the estimates of the states. In others words, actual errors grow larger than the
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A Load NMMAE Output Sign of Residuals Curve Fit Est. (Figure 4.11)
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Figure 4.10. MMAE Performance

filters in the MMAE predict them to grow. The sign changes when the controller's

value for the payload is larger than the external payload. In this situation, the

estimates of the states are propagated farther than the actual states. The sign

convention remained true during all three trajectories. The sign on the residuals

was used to determine whether the MMAE estimate is to be added to or subtracted

from to controller's present value. The output of the MMAE and the sign on the

residuals is shown in Figure 4.10 for Trajectory One.

Figure 4.11 shows the same data graphically for the positive residuals case.

As can be seen, the output of the MMAE is well approximated as linear except for

the region where i,, is sniall. A least-squares curve fit to the data gave:

6 f 1.856iia - 3.793 (4.16)

wiere

* ! the curve fit, estimate of the dclta mass of the payload

* a,,= the delta mass output of the MMAE

0
4-19



* 4.5

4.21

3.9 ..

.3

2.1
0 .5 1 1.5 2 2.5 3 3.5 4 4.5

TRUE DELTA MASS(KG)

Figure 4.11. Estimated Load Verses True Load

The nonlinear region of Figure 4.11 is thought to be caused by the fact that the

residuals in the MMAE become nearly equal as the delta mass approaches zero.

Research indicated that the sign on the residual from the link-two states in

the 2.5 Kg. filter provided the best indication as to how the delta mass should be

combined with the present value of a. The calculations using the sign from the

residual and at! can be included in the overall estimation algorithm, and the final

output would be h. Henceforth all reference to h will be the final output of the

estimator.

The MMBC development thus far has been for the general manipulator.

however, Equation (4.16) may be unique for each different class of robot and

would re-evaluated when MMBC ro,,tine is inipleniented on different robot.

4.9 Controller Analysis

The purpose of the MMAE was to provide an estimate of the payload to the

nlodel-based controller that would reduce tile tracking error. The control algorithm

0
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S cojnsisting of the feedforward eleieit, the feedback element and the MMA-, was

tested using the three trajectories discussed previously. The first case was the

Trajectory Two. This trajectory held the robot stationary and should provide the

least excitation to the estiiiiator and increase the difficulty of the estimation task.

Persistent excitation to the system would help to excite the parameter dependent

Modes thereby making the enhance the differences in the models of the MMAE.

From a practicable standpoint, this external excitation could cause unnecessary

vibration and reduce tracking accuracy and therefore was avoided.

The position of the arm was chosen as 0', - 135' and 135' for links one, two

and three, respectively, and commanded to maintain that position. This position

wts selected as one that has proveti very difficult for the model-based controller

to handle on the PUMA-560 [Lea88cj. A payload of 4 Kg. was selected as a value

that, would be large enough that tracking would be difficult if the payload were not

known, yet less than the upper hinit of a used for the design of the MMAE.

'hie typical tracking errors of each link for a single run are shown in Figures

4.12, 4.13 and 4.14. hIcluded in the plots are the tracking errors for the model-

based controller with no payload information. This represents the case where the

non-adaptive Single Model-based Controller (SMBC) is employed in place of the

MMB(C. As can be seen, the tracking error is greatly improved with the use of

the MMAE. A reference plot is also included in the figures where the SMBC is

artificially given the true payload. This is the best that the MMBC could hope to

ac hieve.

The actual paramxeter estlinate used by the controller is shown in Figure

4.15. The payload estimate lis some high frequency oscillation, but is centered

about the actual payload, 4 Kg. The a^ output, of the MMAE reaches steady

st ate very quickly. There is a small bias on O! but the sign on the residual is

(lit herlijg. Tliis piit tihe iigh frequency oscillation on 'a. The oscillation is due to

t lie miiodels becoming nearly equal as t lie difference between the actual payload and
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i lie cont rollers value of t lie payload alproaches zero. The high frequency oscillation

sli{uld not, pose a problem for the IPUMA since the band-pass of the robot is less

than the frequency of the oscillation. If the oscillation can not be filtered out by

the rol)ot, the estinmate out of the MNI AtE could be filtered before it. is added to

tho controller.

Trajectory Two demonstrated the MMAE's ability to provide an estimate of

thw payload that will significantly reduce tracking errors with minimal movement

by the robot. To test the MMAE under conditions where the nonlinear effects

of the robot become significant, Trajectory One was used. The tracking errors

for this trajectory are shown in Figures 4.16, 4.17 and 4.18. The results again

show that, the MMAE can quickly provi(le an estimate that will greatly reduce the

tracking error. The peak and end tracking errors of the MMBC are very close to

the artificially informed SMBC and much better than the uninformed SMBC. The

estimated value of the payload used by the controller is shown in Figure 4.19.

The peak tracking errors for the MMBC on all three links is slightly higher

that tie artificially informed SMBC but. much less that the uninformed SMBC.

The final position errors for the MMBC are essentially equal to the artificially

informed SM.3C and again, mnuch better than the uninformed SMBC.

The models in the Kahnan filters in the MMAE (lid not include acceleration

information. To improve tracking of trajectories with large jerk components, accel-

eration information needs to incorporated into the filters. The present system noise

strength, Q, allows the filters to track profiles with mild jerk components. A third

trajectory was used to test the capabilities of the MMBC with high jerk trajecto-

ries. Trajectory Thiee is shown in Appendix C. The tracking errors for Trajectory

'lree are showi in Figures C.1, ('.2 and (.3. Again, tracking is greatly improved

1,-y the use of the MMAE over tie uimiifor ied SM B(C but there is additional track-

intt perforiiance to he gai red. THie jayload estiuijat f/ and the value of the della

IISS, iIf are shown iII Figure ('.1.
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The tracking errors are greatly improved with the MMBC over the unin-

formed SMBC. The payload estimate tracks well until the trajectory makes it first

chanie in acceleration, after which the MMAE continued to track for a while and

provides good estimates of the payload. Eventually the Kalnan filters put out bad

residuals and Figure C.4 shows the payload estimate tailing off near the end of the

trajectory.

Two solutions to this problem arise. One would be to include acceleration

as states of the system. The Kahnan filter would carry these states around but

not use them for control generation. The six-state Kalman filter would grow to

nitre states and thereby increasing the computational load. The other solution

would be to have an executive program monitor the residuals and turn off the

MMAE as long as the residuals stay small. If the residuals grow larger than some

predetermined level, the MMAE could be turned on again and get a new estimate

of the payload. The current, value of the parameter would be used during the

timte the MMAE is off. This would have a minimal increase in computation time

during the acquisition phase, but, would reduce to total computational burden by

only re-computing a new parameter estimate when necessary. Another advantage

of this solution is that the oscillations in the payload value used by the controller

would be reduced.

To more fully stress and better highlight the capabilities of the MMBC, a

task was simulated where the robot had picked up an unknown payload and while

in motioni, inadvertently dropped it. The external payload was set to 4 Kg. at the

start and was set, to zero at 0.7 sec into the trajectory. The drop time was chosen

to be after the initial acquisition period and before the peak velocity. Figures

4.20, 4.21 and 4.22 show the tracking errors when the external payload (4 Kg.)

is artificially given to the SMIBC only at the start of the trajectory and then the

pavl,,ad is dropped. Also shown is the case where the MMBC is used aeod the

cmitroller is initially told iothiing about. the external payload.
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The MMAE niust adapt to both the picking up and the dropping of the pay-

load. As the figures show, the tracking errors with the MMBC are less and the

payload estimate converges very quickly (see Figure 4.23). This capability has not

been (lemonstrated with present adaptation schemes used for robot control

rSerg8,S L87a,LS88b,MCS6,DK85,AA I18,AA1186,dVW87,LC84,KG83,Goo85,Ser87]

DD79,SL871a,C( IS 7,AAH85!.

In addition to examining tracking errors, a comparison of the total applied

torque to the arm, T, for the MMBC and the true SMBC provides insight into

how well the payload estimate is working. If the tracking errors are essentially the

same but the difference in the applied torques is substantial, the algorithm using

the least amount of torque is the preferred one. Figures 4.24, 4.25 and 4.26 show

the total torque applied to the arm for the three links using the MMBC and the

artificially informed SMBC. Trajectory One was used and the payload was 4 Kg.

The figures show that the torques from the MMBC due oscillate. This is because

of the oscillation in the payload value in the feedforward element. The peak for all

the links is higher for the MMBC than tLe SMBC, but the area under the curves

appears to be about the same. This is an indication that the amount of energy

used by the MMBC and the SMBC is roughly equivalent and there is no additional

cost, for using the MMBC approach.

The tracking errors were greatly improved in all cases over the uninformed

SMBC and were nearly equal to the artificially informed SMBC. The closed loop

parameter estimation for this case study required an approach not previously taken.

'The MMAE was set up to provide an estimate of the difference between the as-

suimed value of the payload and the true value. The Multiple Model-Based Control,

.MM3(', has shown good prontise for robot control in simulation.

The following section presents the experiniental results of the MMBC used to

comtrol time PUIMA-560. The M BA C was used on time first 11iree links of the PUMA-

560 without any additional tuning of Q and R in the Kalman filters. Re-tuning

4-30



.003

.02 -- - I --

-.003

*. .. .. .

V) .01

-.0083
0 .3 .6 .9 1.2 1.5 1.8 2.1

TIME(SEC)

Figure 4.21. Tracking Error with Dropped Payload: Link 2

.00S3C ihFl ala uota~oiA tr fTaetr

7 0 ............ Wih....o. a lad Ifrm to

-. 0031



00

-.002
0 3.6. .2151. .

0.0



12

-3-

* -6_

-9
0 .3 .6 .9 1.2 1.5 1.8 2.1

TIM E(SEC)

Figure 4.23. Payload Estimate with Dropped Payload

- PaylIoad Value In Feeciforward Element: it

LPiayla Estimate Out Of MMAE: tif

4-:3



30 F

25 - r

L 15 -

C>

10 ---- -- '--~-_ _ _

0
0 .3 .6 .9 1.2 1.5 1.8 2.1

TIM E(SEC)

Figure 4.24. Total Applied Torque for Link One

70T -

60 K-

20

10 .

0 .3 .6 .9 1.2 1.5 1.8 2.1

TIME (SEC)

Figure 4.25. Total Applied Torque for Link Two

V M C Wth ull -Payload Informnation

S MMBC With IiN alodItfolto

- - - SMBC Withi No Payload Information

4-34



6

0-

-2

-18

0 .3 .6 .9 1. 1.5 1.8 2. 1
TIM E(SEC)

Figure 4.26. Total Applied Torque for Link Three

[VZMC Withi Full Payload Information

.. MMBC With No Payload hIformation
0.11SMH WlNo PalodInforiiation

4-35



wa,; riot. reprired to (lefloristrate 1thie pot ertial of thle MM 13( techniquie. There

is add~itional tracking p~erformlance to be gained by tuning the Kalman filters to

mratchi the robot.

4.10 ExperimentIal Eviualion

Tile potential of any new control algorithmns must by experimentally eval-

uiated before any claimis of success can be made. Leahy has developed a PUMA

control envi roil ment [LS861 that, the MIMBC was tested under. The nature of the

mnodel-based control schemre iaturally allows for a coarse parallel structure of the

conitrol algorithlm. R13ACE was modified to exp~loit this characteristic and the feed-

forward andi feedback calculations were p~ut onl different computers [Lea88b]. Thle

feedforward processor was upgraded to a VAXstation III for this thesis effort.

4.10.1 Test Setup Thle MMBC scheme was implemented onl the PUMA-

56it available at AFIT. Thre first, three liuks of thle robot were used to demionstrate

tire control t echrnique and the last three links were held stationary at 00. The

corriputatrons needed to control tire robot were proportioned betwern two parallel

processors, a PDP 11/73 anid a VAXst.ation 111. The coarse p~arallelismn inherent in

tile lniodel- based control structuire permnit~s tile feedforwarcl calculations to run at a

dlifferent, rate arid oni a difrereirt comipuiter thIan the feedback calculatioi.-, without

degrading tracking Jperforlnarce [LeaM~bl.

'File 1 1/73, or Servo Processor, performed tile PD loop calculations, read

j(?ilit ellcodler values, atid passed mrotor torques to the robot. It also established

tihe ''asic tuninig for tile overall coi rol aiid comiincatiorr at 7 is. This was fihe

tim iig sigiial availairle from i thre 1 / 73. Ie assem bly laniguage rou ti nes used in

t I r o~ 1). -cssor toco (rr jol irei robo0t were' it mod1ified version of those originally

de veliope,' at 1?ersseliter Pol Vt ecu Imic h ist itt te bY LealiY TS8W~. Tire mrodi fications

p0 -,vid(j fo- tile (list Iit)tjti of' tihe nmnal t orqune mid~ est imnationi calculations to



0 the feedforwad processor ltea,8bj.

The communications between the Servo Processor and the feedforward pro-

cessor was handled via a IC bit, DRVI tI-J, parallel interconnect. The information

passed over the buss consisted of 12 real numbers: six joint positions from the Servo

Processor and six noiinal molor torques to the Servo Processor. The computer

system level calls for the coniniuicatioins were handled by a commercial software

package called VAXLAB jDigS 6]. The time for the 12 numbers to be transferred

between the two computers was about, 2.25 ins.

The time for the VAXstation to compute the nominal torques employing the

payload estimate required about 19 ns. To maintain synchronization between the

two computers, the timing for the nominal torque updates including the data trans-

fer time must be a multiple of 7 is. The VAXstation performed its calculations

amid waited for the Servo Processor to initiate data transfer. The Servo Processor

p)erformed tihe data transfer to the VAXstation at a 28 ins cycle time. The 28 : 7

split between dynamics compensation aud servo loop update rates still produces

good model-based control tracking results [Lea8gb) when payload information is

available.

4.10.2 Experimental Results The noise strengths in the MMAE filters from

the simulation were used without any additional tuning. The results were very

promising it spite of the lack of retuning the system noise strengths.

A payload of 2.5 Kg. was used for the experiment so as not to exceed the

manufacturer's specification for maximum payload. This has been shown to cause

severe performance degradation (Leab. Trajectories One and Three were used

al tie tracking errors are showi ini Figures 4.27, 4.28, 4.29 and Appendix E.

The plots show the cases for dhe incorrect SMBC, tile MMBC arnd the artificially

iinformed SMI(.'.

As raii be seemi, lie %IIAE greally improved lie tracking performance of

-13
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the robot. Compared to the tracking performance in simulation, there is some

additional accuracy to be gained by tuning the filters in the MMAE to match the

robot. The noise strengths in the experiment were the same ones used in the sim-

ulation. The sign on the residuals is not always reflecting the correct situation and

the estimated from the MMAE is incorrectly being combined with the controller's

present value in the later part of the trajectory. Figure 4.30 indicates that the

estiniate from the MMAE (6f) looks the same during the trajectory but the value

used by the controller (a) decreases at the end of the trajectory. This indicates

that the signs on the residuals are not, correct. Tuning the filters should alleviate

this tendency. Also the high frequency oscillation in the payload estimate seen in

siniulation is not, presenit in the experimmeu t.ally tracking errors.

Similar results can be seen for Trajectory Three in Appendix E. They show

ite same probleln as in sinmumlatioi. Te payload value decreases during the later

,1-.10



pa rt of the trajectory because of the high jerk profile. The same two soluitions

discussed above can be employed here.

A new robot control algorithm (MMBC) has been developed and an initial

evaluation performed. The potential of using the MMBC has clearly been demon-

strated. A complete evaluation of the new technique is beyond the scope of the

thesis. The following section will discuss some of the remaining issues.

4.11 Discussion

The MMBC technique has been successfully demonstrated in simulation and

experimentally evaluated on a PUMA-560. Some implementation issues were ad-

dressed as part of the initial evaluation. To more fully assess the potential of the

MMBC, there are other issue that must be addressed.

The MMBC requires running three Kalman filters and executing the con-

troller calculations in parallel at high speeds. This is not a trivial task. Very

minimal FORTRAN code optimization has been applied to the present program.

The computer used for the simulation (VAXstation III) runs at 3 MIPS and the

MMAE calculation require approximately 18 to 19 ms. This could be reduced by

more efficient FORTRAN coding.

A larger payoff could be realized by reducing the number of links in the models

used in the Kalman filters from three to two. This would reduce the number of

states from six to four. The results over Trajectory Two show that lack of motion

of the links does not degrade the estimator's performance. The time to run the

MMAE algorithm would be significantly reduced and the estimation routine could

be run at the same sample rate as the feedback controller. Preliminary research

into state reduction indicates t bat four states should be sufficient for the MMAE

to estimate the payload.

For this investigation, the F(a, ) matrix was precomputed. By reducing the

inimmiber of states to four, tihe F(a, t) matrix should be able to be computed during
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0 the dynamlic copll)ensation interval. flaving F(a, t) computed on-line would make

tie MMBC algorithm more versatile.

The high frequency oscillation in the output of the parameter estimate could

be addressed in several ways. The output could be put through a low-pass filter;

however, this would reduce the convergence time of the MMAE. Another approach

would be to monitor the residuals and turn the MMAE off once the controller has

a good estimate of the payload. The residuals would continue to be monitored to

determine when a large change had occurred. Then the MMAE would be turned

on again until the controller had a new estimate of the payload. The performance

of the MMBC algorithm on the PUMA-560 has shown that the tracking is not

efrected by the oscillation in the parameter estimate. This idea is in consonance

with a number of researcher's philosophy of turning parameter identification on

only periodically fMay8].

As can be seen from Figure 4.10, the estimate is biased. When the bias is

removed by the use of Equation (4.16), the result is a very good estimate of the

delta payload (see Figure 4.11). The reason for the bias in the MMAE output is

not exactly clear as yet. This is a nonlinear estimation problem, so a bias in the

output is totally unexpected. One possible contribution could be the assumption

that the dynamics driving noises are pairwise independent. Since the equations

of motion are highly coupled, it is reasonable to assume that the noises would

also be coupled. Since this was the first attempt at using Bayesian estimation for

robot control, the noise models were kept simple in order to establish a baseline

for further research.

When the output of the MMAE (i) .a, used in the feedforward element,

results have shown that tracking is enhanced and that 61 approaches zero in steady

state. Figures 4.19 and ('.4 indicate a bias of about 0.4 Kg. in aj. This remaining

bias may be linked to the correlated noise problem just (iscussed. When the bias

is relmoved fronii f, Figure 4.31 .:hows the resulting a and the estimate of payload
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Figure 4.31. Payload Estimate With Bias Removed
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used in the feedforward element, h. As can be seen, the tracking improvement is

substantial. Figure 4.32 shows the tracking errors for all three links. The tracking

performance is nearly the same as the case with the bias. Figure 4.33 shows

the torques generated. The high frequency oscillation is removed for all but the

acquisition phase of the scenario. When the bias was removed in the experiment,

the tracking results were less impressive. Tuning the MMAE to the robot should

improve this condition.

Preliminary evaluation of simulation results showed that, in the conditional

probability calculations (see Equation (3.15)), the value for pk(ti-1) had to be

kept, at 1/3. Without pk(li-l) held constant, the output of the MMAE became

erratic. The effect of keeping pk(fi-j) coistait is to reset the conditional probability

cAdc ilatioti each sample period and to disregard all the iniformation that went into

making the previous parameter estimate. The controller's value of the payload

4-43



.004

~ .002v - "

-. 006 ----- - - _

0 .3 .6 .9 1.2 1.5 1.8 2.1

TIM E(SEC)

Figure 4.32. Tracking Error With Bias Removed

- Link 1 Error

Link 2 Error

- - Lnk3 Error

4-44



80

-;j 40 -r ~

0~~ ......7 ~ - ------- _

0 .3 .6 .9 1.2 1.5 1.8 2.1
TIME (SEC)

Figure 4.33. Trotal Generated Torque With Bias Removed

Lillk 1 Torque
Link 2 Torque
1, -Lik 3 Torque

4-45



converges very quickly to the externally applied value and tracking performance is

improved when pk(ti-1) = 1/3.

4.12 Summary

The results of the simulated and experimental control of a PUMA-560 using

a Multiple Model-Based Control (MMBC) technique have been presented. Tile

tracking errors of the robot were greatly reduced when the MMAE was used to

provide the model-based controller an estimate of the payload. In simulation the

tracking performance of the controller with the MMAE was comparable to the

SMBC with full payload information. The performance of the MMBC on the

PU.TMA-f560 seemed to validate the simulation results. The tracking errors were

significantly reduced when compared to the uninformed SMBC and very close to

the artificially informed SMBC.

Issues that warrant additional research have been highlighted. However, the

results from this effort indicate that the MMAE can be used to provide a closed-

loop estimate of the payload, that the MMAE can quickly adapt to changes in

the payload, and that the model-based MMAE provides excellent control of the

ro, ot. In the final analysis, the MMBC has demonstrated the potential to provide

a unique solution to a critical Air Force problen.
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V. Concltsions and Recommendations

5. J Conchsionls

The research performed in support of this investigation met the stated ob-

jective and has proven very fruitful. The Multiple Model Adaptive Estimation

(MMAE) technique has successfully been applied to the difficult problem of closed-

loop payload estimation in model-based robot control. Combining the MMAE with

a proven control technique has resull.ed in a new development that has the poten-

tial to be very useful in application where changing payloads can be expected. The

estimate of the payload converges very quickly, which allows the controller to keep

the peak tracking error to a minimum. The rate of convergence does not seem to

depend on the trajectory used, and therefore persistent excitation appears not to

be a proLlein for the Multiple Model-Based Controller (MMBC).

As part of the thesis effort an analysis of the perturbation plant, F(a,t) was

performed. The analysis showed that dependence of the payload on the perturba-

tion plant is inininial when the feedforward element crrcetly models the payload

coudliton of the robot. Tie investigation also showed that F(a,t) can only be

as:unied constant for very slow trajectories. The use of the perturbation approach

has been discussed in the literature and the minimal dependence of the payload

has been assumed. Now that assumption has been demonstrated to be acceptable

only under restrictive conditions.

A new delta parameter approach was taken to produce a parameter estimate

because system model differences were apparent only when tile controller's payload

value, a, was mismatched from the true value. A new technique for estimating a

based on the residuals from a hak of linear Kalan filters had to be developed.

Tihis new technique provides an estimnate of the dclIta mass of the payload. The

sig ns of the residuals indicates if the estinmate of a is added to or subtracted from
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0 the cotiroller's present value f tHie payloa.(. The result is a parameter estiniate

that, converges very quickly. A review of current publications indicates that this

approach is unique.

it simulation the MMBC tracked as well as the artificially informed model-

based controller and required about the same amount of control energy. The peak

and final tracking errors for the MMBC were much better than the uninformed

niodel-based controller. A special trajectory was used to demonstrate the adaptive

capability of the MMBC. The robot was commanded to move along a trajectory

and the payload was dropped before the end of the run. The MMBC tracking

results were much better than the non-adaptive model-based controller (SMBC)

that, had Oeen given the true load initially but not told that the payload was

dropped.

The simulation results were validated by implementing the MMBC on the

PI'MA->60. The noise strengths iii the Kalman filters were not changed from the

siniulatiotn values when the MMBC was run on the PUMA. Again, the tracking

errors were greatly improved over the uninformed SMBC and comparable to the

artificially informed SMBC.

5.-0 Recommendation.s

The objective of this thesis was to develop and initially evaluate the potential

of using a control scheme that employed the Multiple Model Adaptive Estimator

(MMAE) to provide an estimate of the payload to a model-based controller. The

reference used to measure the potential of the new algorithm was that the Multiple

Model-Based Controller (MMBC) should track as well as the artificially informed

model-based controller. The MMAE has successfully shown that it can provide

payload estimates that, greatly improve tracking of the robot. Some issues surfaced

that were not part of this thesis effort but need further investigation.

One area that warranits additional effort would be the refinement of the
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S prese-t algotr hm. The F()lR' ?AN code conld he optimized and the number of

states reduced. All this is in an effort to reduce the computational burden. Also

thre is current research at AIFIT that, will put the entire Kahnan filter algorithm

on a single integrated circuit in the 1989 time frame. This would greatly reduce

computational time needed to run an M MAE scheme and iay be a necessity if a

is expanded to include additional parameters. It will also allow the F(a, t) matrix

to be computed on-line, thereby increasing the flexibility of the MMBC algorithm.

Another area should address the tuning of the Kalman filters in the MMAE.

'rte noise levels that were used in the simulation were also employed in the exper-

inetit. The tracking of th)e PUMA could be improved by re-tuning the MMAE to

match the robot. The system and measurement noise strengths used in this thesis

were a first attempt to add noise to tie model of a robot in a meaningful way.

Also the payload was assumed to be a point mass. The cases when this as-

sumption cannot be made need to be experimentally investigated. The MMAE

might have to be expanded to include 1)arameters other than the mass of the pay-

load. If a point mass assumption cannot, be made, a could be expanded to include

any of the m additional payload parameters required. This would nLecessitate ad-

(litional Kalman filters in the MMAE.

The fitial area to consider would be to compare the MMAE to other tech-

niques that have been proposed in the literature. The MMAE technique works, but

it may not, be the best, for all robot estimation tasks. A head-to-head comparison

of differeilt techniques would help defWip lie strong points of the MMBC approach.

'ite d 1 1a estimation approach could be use(d iHi otler areas as a new technique to

estihnate uitknown parameters in it closed-loop situation. The scheme developed

im thiis thesis provided a very quick aid acctirate estimate without the use of an

excitatiolt signal.

Tle remaining issues dho it t pose all real olstacles to the successful appli-

ca'in (4 tle Miliple Model-Base (ot rol tecliiipie to the robot control problem.



If app)lied to teleJpresence activities, the robot emlployving a MMDBC could operate

without (a prior p~ayload itiforiat ion. The unknown payload could be estimated

very q1uickly and be used to improve the tracking of the robot. The same estimate

could be telenietered back to the remote operator to providIe him/her with sensory

feedback as to how hteavy the load is, thereby imiprovinig the overall performance

of the telepresence loop.



Appendix A. Macros anid Abstracts of FORTRAN Source Code

This appendix provides an example for the macro used in MACSYMA. Also

included are the abstracts of the FORTRAN code used in this thesis.

@ This macro will find the equations of motion for the
@ first 3 links of a PUMA-560. It is based on
@ Tarn's paper

@ set up the environment

writefile('fullrun_ 8 .log"l);

fpprec :5;
fpprintprec :3;

infeval true;
float2bf true;

@ dimension the needed arrays

array (D,3,3) $
array(Dl ,3, 3)$
array (D2 ,3 ,3) $
array(D3 ,3,3) $

@ initialize constants

gray 9.8062$

load 0.0;

ail .7766;
ai2 2.3616;
a-13 .5827;
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ml 12.96$
m2 22.37$

s23 sin( q2 + q3 )$
c23 cos( q2 + q3  )$
c22 cos( q2 + q2 )$

cl cos(ql)$
c2 cos(q2)$
c3 cos(q3)$
s : sin(ql)$
s2 sin(q2)$
s3 sin(q3)$

a2 0.4318$
a3 - .0191$
f3 • .1505$
xbl 0.0$
ybl .3088$
zbl .0389$
xb2 - .3289$
yb2 .0050$
zb2 .2038$
klxs .1816$
klys .0152$
klzs .1811$
k2xs .0596$
k2ys .1930$
k2zs .1514$
k3zs .0021$

mti : 1.0 / (load + 6.97)$

start calculation

xb3 6.97 * .0136 * mti$
yb3 6.97 * .0092 * mti$
zb3 (6.97 * .1522 + .48932 * load) * mti$
k3xs (598585344 * load + 262504960)/(2500001792 * load

+ 17424973824)$
k3ys . k3xs$

m3 : load + 6.97;

load inertia matrix

D[1,1] : ail + ml * klys + m2 * k2xs * s2^2 +
m2 * k2ys * c2A2 + m2 * a2^2 * c2A2
+ 2 * m2 * a2 * xb2 * c2^2 + m3 * k3xs
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* s23^2 + m3 * k3zs * c23^2 + m3 * f3A2

+ m3 * a2A2 * c2^2 + m3 * a3^2 * c23^2

+ 2 * m3 * a2 * a3 * c2 * c23 + 2 * m3 *

xb3 * a2 * c2 * c23 + 2 * m3 * xb3 * a3

* c23^2 + 2 * m3 * yb3 * f3 + 2 * m3 *

zb3 * a3 * c23 * s23 + 2 * m3* zb3 * a2 *

c2 * s23$

D(2,2] m2 * ( k2zs + a2^2 + 2* a2 * xb2 ) +
2 * m3 * a2 * ( a3 + xb3 ) * c3 +
2 * m3* a2 * zb3 * s3 + m3 * ( k3ys +

+ a2^2 + a3^2 + 2 * a3 * xb3 )$

D[3,3] m3 * ( k3ys + a3^2 + 2 * a3 * xb3 )$

D[1,2] m2 * a2 * zb2 * s2 + m3 *( f3 * xb3 +

a3 * yb3 + a3 * f3 )* s23 + m3 *( a2 *
yb3 + a2 * f3 ) * s2 - m3 * f3 * zb3

* c23$

D[1,3] m3 * ( xb3 * f3 + a3 * yb3 + a3 * f3 )
* s23 - m3 * f3 * zb3 * c23$

D[2,3] m3 * ( a2 * xb3 + a2 * a3 ) * c3 + m3 *

a2 * zb3 * s3 + m3 * ( 2 * a3 * xb3 +

a3^2 + k3ys )$

D[2,1] D[1,2]$

D[3,1] D[1,3]$

D[3,2] D[2,3]$

load Corials/centrifugal matries

Dll,l] 0 $

Dl[l,2] m2 * ( k2xs - k2ys - a2^2 -2 *

a2 * xb2 ) * c2 * s2 - m2 * a2 * yb2

* c22 + m3 * ( k3xs - k3zs ) * c2 *

s2 + m3 *( k3xs - k3zs ) * c3 * s3

+ 2 * m3 *( k3zs - k3xs )* s2 * s3 *

s23 2 * m3 *a2 * xb3 * c2 * s23 + 4 * m3

* a3 * xb3 * s2 * s3 * s23 + m3 * a2 *

xb3 * s3 2 * m3 * a3 *

xb3 * c2 * s2 - 2 * m3 * a3 * xb3 * c3
* s3 + m3 * a2* zb3 * c2 * c23 - m3 * a2*

zb3 * s2 * s23 + 2 *m3*a3*zb3*c23^2 - m3
* a3 * zb3 + m3 * a2 * a3 * s3 - 2 * m3

* a2 * a3 * c2 * s23 m3 * a2"2 * c2 *
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s2 + 2 * m3* a3^2 * s2 * s3 * s23 -m3
* a3^2 * c2 * s2 - m3 * a3A2 * c3 * s3$

Dl[1,3] m3 *( k3xs k3zs ) * c2 * s2 +
m3 *(k3xs - k3zs )* c3 * s3 + 2 *
m3 *( k3zs k3xs ) *s2 * s3 * s23
+ 4* m3* a3* xb3* s2 * s3 * s23 - 2 * m3
* a3 * xb3 * c2 * s2 - 2 * m3 * a3 *

xb3 * c3 * s3 - m3 * a2 * xb3 * c2 *
s23 + 2 * m3 * a3 * zb3 * c23^2 + m3 * a2

* zb3 * c2 * c23 - m3 * a3 * zb3 + 2 *

m3 * a3^2 * s2 * s3 * s23 - m3 * a2 *
a3 * c2 * s23 m3 * a3A2 * c2 * s2
m3 * a3A2 * c3 * s3$

DI[2,1] DI[1,2]$

DI[2,2] m2 * a2 * zb2 * c2 + m3 * f3 * zb3
* s23 + m3 *( f3 * xb3 + a3 * yb3 + a3
* f3 )$

D1[2,3] m3 * f3 * zb3 * s23 + m3 *( f3 * xb3
+ a3 * yb3 + a3 * f3 ) * c23$

DI[3,3] m3 * f3 * zb3 * s23 + m3 *( f3 * xb3
+ a3 * yb3 + a3 * f3 ) * c23$

DI[3,1] DI[1,3]$

DI[3,2] Di[2,3]$

D2[lI] - DI[1,2]$

D2[1,2] 0 $

D2[2,1] D2[1,2]$

D2[2 ,2] 0 $

D2[1,3] 0 $

D2[3,1] 0 $

D2[2,3] - m3 *( a2 * xb3 + a2 * a3 ) * s3 +
m3 * a2 * zb3 * c3$

D2[3,2] D2[2,3]$

D2[3,3] m3 *( -a2 * xb3 - a2 * a3 ) * s3 +
m3 * a2 * zb3 * c3$

D3[I,1] - DI[1,3]$
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D3[1,2] - D2[1,31$

D3[1,3] 0 $

D3[2,1] D3[1,21$

D3[2,2] :- D2[2,31$

D 3[ 2, 3] :0 $

D3[3,11 D3[1,3]$
D3,13,21 D3[2,3]$

D3 [ 3, 3] 0 $

form the gravity vector

G! 0 $

C2 -m2 * gray * xb2 + a2 )*c2 + m2 *gray

yb2 *s2 -m3 *gray * xb3 + a3 )*c23-
m3 *gray zb3 * s23 -m3 * gray a2 *c2$

G3 :-m3 * gray *( xb3 + a3 )*c23 - m3 *gray

zb3 * s23$

form the inertia matrix and non-linear h

d:matrix([d[1,l],d[1,2],d[1,3]],[d[2,1],d12,2],d[2,31],
[d[3,l],d[3,2],d[3,3]])$

hi: matrax ([di[ 1,1] ,dl [1,21 ,di [1, 311 ,[di [2,11,
di [2 ,2] ,di[2 ,3]] , ([3, 1], dl[ 3 ,2],dl [3 ,3]]) $

reduce the equations

hil bfioat(hi)$
hil ev(hl)$
hil expand(hl)$
hil xthru(hi);

h2 :matrax ([d2 [1,1],d2 [1,21 ,d2 [1,3]], [d2 [2,1],
d2[2 ,2], d2 [2 ,311 ,[d2[ 3 ,1] ,d2 [3, 21 ,d2[3 ,3]]) $

h2 : bfioat(h2)$
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h2 ev(h2)$
h2 : expand(h2)$
h2 • xthru(h2);

h3:matrax([d3[l,l],d3[1,2],d3[1,3]],[d3[2,1],
d3 2,2] , d3[2,3] ] , d3[3,1] ,d3[3,2],d3[3,3]])$

h3 : bfloat(h3)$
h3 : ev(h3)$
h3 : expand(h3)$
h3 : xthru(h3);
closefile()
quito

% % %%% %% %% % % %% %% %% %% %% %% %% %% %% %

SIMULATION ROUTINES

%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%

C % % % % % % % % % % % % % % % % % % % % % %
C
C SIMFLECT3: Simulate Full Lagrange-Euler Computed Tourque

C for the MMAE scenerio.
C
C Abstract: This program attempts to control the PUMA-600
C using the computed torque formulation with LE equations
C of motion for a six degree of freedom robot arm. C
PUMACLE3 is used to generate

C the dynamics and the full interial matrix and gravity
C vector are used. Nonlinear terms are ignored. Desired
C positions, velocities accelerations and initial C
positions are input from the TRAJSETUP subroutine. The C
PUMA-600 is simulated by the SIM6DOF subroutine.
C Error data is formated and stored by the SEOUT C
subroutine. The GRDATA subroutine allowq t-hP user to C
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select the operational environment.
C
C VERSION 3 by LARRY TELLMAN 28 JUL 88
C
C
C

C % % % % % % % % % % % % % % % % % % % % % % % % % %%%%

C
SUBROUTINE RBTFLE3(OPT,Q,QD,I6,RB6,F6M,D,P,GG)

C
C Abstract: This subroutine allows the user to obtain C

several formulations of the Lagrange-Euler dynamics C
for a 3 link PUMA-600 robot arm. The user must select C
which option and also provide position, velocity, C
acceleration and joint 6 load information.
C Any load is assumed to be rigidly attached to joint 6.
C All user supplied joint 6 values must represent the C

link and load modeled as one entity. Actuator inertia C
values are summed with the diagonal inertia terms using C
Tarn's values. The reduced MACSYMA LE equations are C

used.
C
C
C VERSION 2.0 by LARRY TELLMAN 13 JUL 88
C
C Inputs:
C
C OPT: An integer variable with selects the dynamics C

formulation desired.
C
C Q: A (6xl) real vector of joint angles in radians.
C
C QD: A (6xl) real vector of joint velocities in C

radians.
C
C 16: A (3x3) matrix of joint 6 interia terms.
C
C RB6: A (3xl) real position vector of the center of C

mass of joint 6 with respect to itself as ( C
x,yz) vector.

C
C F6M: A real variable representing the external mass of
C joint 6.
C
C Outputs:
C
C D: A (6x6) real matrix of interial terms.
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C
C P: A (6xl) real vector of coriolis and centrifugal C

forces

C
C CC: A (6X) GRAVITY VECTOR

C
C SUBROUTINE OPTIONS:

C
C OPT-I: The D matrix is assumed to be diagonal and C

Coriolis and centrifugal terms are ignored.

C
C OPT-2: The full D matrix is calculated but the the C

Coriolis and centrifugal terms are ignored.

C

C
C OPT-3: The full Lagrange-Euler dynamics are calculated.
C

C TOURQUE CALCULATION:

C T
C T - (D * QDD) + P P - (QD) * H * QD + G
C
C QDD: A (6xl) vector of joint accelerations.
C

C % % % % % % % % % % % % % % % % % % % % % % % % % % %

0
% % % % % % % % % % % % % % % % % % % % % % % % % % % % %

SUBROUTINE SROBOT(Q,QD,QDD,TIN,I6,RB6,F6M,DELT,

# NINT,ENOISE,SNOTSF)

C Abstract: This subroutine simulates the motion of a 6 C
DOF robot arm. Manipulator dynamics are calculated C

using the full
C Lagrange-Euler formulation. A 4th order Runga-Kutta C

integration technique is employed to compute the C
position, velocity and acceleration of the six joints C
that result from an applied torque. The user can C
specify the total simulation time, size of the C
integration interval and joint 6 loading.
C
C VERSION 2 MICHAEL B. LEAHY JR. 15 SEP 85

C
C REVISION 1: Incorporate viscous and static friction C

models
C 17 Jul 87
C
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C REVISION 2: Incorparate encoder and system noises
C 28 JUL 88

*C
C Inputs:
C
C Q: A (6xl) real vector of joint angles in radians.
C
C QD: A (6xl) real vector of joint velocities rad/sec.
C
C 16: A (3x3) matrix of joint 6 inertia terms.
C
C RBG: A (3xl) real position vector of the center of C

mass of joint 6 with respect to itself.
C
C F6M: A real variable representing the mass of joint 6
C
C TIN: A (6xl) real vector of applied torques.
C
C DELT: A real variable representing the total C

simulation period.
C
C NINT: An integer variable representing the number of
C integration intervals.
C
C ENOISE: STRENGTH OF THE UNIFORM ENCODER NOISE
C
C SNOISE: STRENGTH OF THE GAUSSIAN SYSTEM NOISE
C
C Outputs:
C
C Q,QD: Final values of these vectors.
C
C QDD: A (6xl) real vector of final joint acceleration
C values in rad/sec% 2.
C
C NOTE: DELT/NINT SHOULD ALWAYS BE LESS THAN I ms.

C
C % % % %% % %%%%% % % %%%%%%

C % % % % % % % % %%%%%

C
SUBROUTINE SLCTIC3(NIC)

C Abstract: This subroutine allows the user to select the
C manipulator initial condition for control algorithm C

evaluation under R3AGE. The IC may be one of three C
predefined conditions, input by the user or remain C
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unchanged. User input conditions are automatically C
checked against the specific manipulator range limits C
.by the RC!{K subroutine. IC values are stored in
C COMMON vectors in degrees and radians.

VERSION 1.0 MICHAEL B. LEAHY JR. 7 DEC 85

REVISION 1: Incorporates TMODE into MTYPE common and C
corrects

27 FEB 86 error of missing T6D matrix in TRAJ common.

REVISION 2: CHANGED TO RUN ON THE MICROVAX FILE C
STRUCTURE

14 JUL 88 LARRY TELLMAN

C Output:

QO: A (6xl) COMMON vector of initial joint angles in
degre-s.

QOR: A (6xl) COMMON vector of initial joint angles in

radians.

NIC: An integer representing IC option number. When
C the IC's remain unchanged so does this value.
C

C % % % % % % % % % % % % % % % % % % % % % % % % % % % % %0

C

SUBROUTINE SLCTLD3
C

C Abstract: This subroutine determines the manipulator C
load configuration used by R3AGE for a 3 link PUMA.

C The user may select the default load model or input C
his/her own inertial and center of mass

C values. Total link and load mass is checked against C
manipulator limits.

C
C VERSION 1.0 MICHAEL B. LEAHY JR. 7 DEC 85

C
C REVISED BY LARRY TELLMAN 28 JUL 88

G

C REVISION 1: Incorporates TMODE into MTYPE common.
C 27 FEB 86
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C

C REVISION 2: Incorporates changes to default loading to
C 26 AUG 87 to account for joint 6 w/o a gripper as per

C Tarn's dynamics.

C

C REVISION 3: CHANGED TO REPRESENT A 3 LINK PUMA ARM

( 28 JUL 88
C

C

I )uts:
C

C RTYPE: A character*2 COMMON variable that containing

C the selected manipulator code.
C

C Outputs:

C
C H6: A (3x!) COMMON vector of load/link inertia about
C the center of mass.
C

R6B: A (3xl) COMMON vector of load/link center of C
mlass

C

C F6M: A COMMON real variable of load/link total mass.

C

C % % % % % % % % % % % % % % % % % % % % % % % % %

0

C
C

SUBROUTINE SLCTTJ3(NIC,PNIC,NSPI,ND)

C
C Abstract: This subroutine allows the user to select the
C manipulator joint space position, velocity and C
acceleration trajectories for control algorithm C
evaluation under R3ACE. A zero, slow and fast set of C
base trajectories are predefined. The user may C specify

his/her own base trajectories contained in
C a set of three files. Actual trajectories stored in C

COMMON arrays are determined from the base trajectory C
and input sample rate. Position trajectories are C

formed by addition of the initial conditions selected C
by the SLCTIC subroutine and actual trajectory data, C
and are checked against specific manipulator

C range limits by the RCHK subroutine. Trajectories C
starting from IC option 2 are reversed. The option to C

leave existing actual trajectory data unaltered is also C
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available.
C0
C VERSION 1.0 MICHAEL B. LEAHY JR. 7 DEC 85
C
C REVISION 1: Incorporates the changes necessary so that
C IC2
C 30 JAN 86 initial condition selection is correctly C

handled when an unchanged trajectory is C
selected.

C

C REVISION 2: Incorporates TMODE into MTYPE common.
C 26 FEB 86
C
C REVISION 3: Incorporates changes to allows generation of

C 27 MAR 86 zero trajectory for any 7ms multiple.
C
C REVISION 4: Corrects errors in trajectory file C

specification
C 8 Aug 86 read statements.
C

C REVISION 5: Change default fast trajectory to spline C

one.
C 22 FEB 88
C
C REVISION 6: CHANGED TO MATCH THE FILE STRUCTURE ON THE
C MICROVAX

C 14 JUL 88 LARRY TELLMAN
C
C Input:

C

C QOR: A (6xl) COMMON vector of initial joint angles in
C radians.

C

C NSPI: An integer representing sampling rate speed.
C

C NIC: An integer representing initial condition number.

C
C PNIC: An integer representing the previous initial C

condition number.

C
C Output:

C
C ND: An integer representing the number of sampling
points.

C
C QDSI: A (6,ND) COMMON matrix of incremental joint
positions.

C

C QDST: A (6,ND) COMMON matrix of joint velocities.
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C
C QDSTT: A (6,ND) COMMON matrix of joint accelerations.

C % % % % % % % % % % % % % % % % % % % % % % % % % % % % %

SUBROUTINE DINV(Q, IFILT, DET, A)
C

C

C
C THIS ROUTINE WILL CONPUT THE INVERSE INERTIA MATIRX FOR A
C THREE LINK PUMA ARM. THE EQUATIONS ARE BASED ON TARN'S
C PAPER AND HAVE BEEN REDUCED BY MACSYMA. THE MATRIX NUMBER
C DIRECTS THIS ROUTINE TO CALCULATE THE INERTIA FOR AN
C ASSUMED LOAD.

C
C VERSION 1: BY LARRY TELLMAN 2 AUG 88
C
C
C INPUTS:

C

C
C Q: POSITION VECTOR
C

C
C IFILT: THE INERTIA MATRIX NUMBER
C OUTPUTS:

C
C A: THE ADJOINT OF THE INVERSE INERTIA MATRIX
C
C DET: THE DETERMINT OF THE INVERSE INERTIA MATRIX

C
C

C %% %% % % %% %%%%% %% % % % % %

E X P E R I M E N T A L R O U N T I N E S

5 A-13



%% %% %% % % % %% % % % % %% %%%%%% %6OC

C

PROGRAM FFMBC

C THIS MAIN PROGRAM WILL RUN THE MMBC ALGORITHM ON THE
PUMA-560.
C THE FIRST THREE LINKS OF THE ROBOT ARE USED TO DEMONSTRATE
THE CONCEPT. IT NEEDED TO BE LINKED TO THE MMAELIB LIBRARY TO
PICK UP THE SUBROUTINES CALLED. THIS ROUTINE IS RUN IN
CONJUNCTION WITH THE ARCADE PROGRAM. THIS ROUTINE WILL MAKE
THE CALLS TO
C READ AND WRITE THE DATA TO THE SERVO PROCESSOR AND THE
ARCADE
C PROGRAM HANDELS THE CONTROL OF THE ROBOT. THE MMAE
ESTIMATE
C USED BY THIS ROUTINE CAN BE TURNED ON AND OFF BUT THE
C CALCULATIONS FOR THE ESTIMATE ARE DONE EACH SAMPLE PERIOD.
THE
C TIME REQUIRED FOR THE MMAE CALCULATIONS IS ON THE ORDER OF

18ms.
C THE DATA TRANSFER TAKERS AN ADDITIONAL 3 ms. THEREFORE
THE
C FEEDFORWRAD SAMPLE PERIOD NEEDED BY THIS ROUTINE IS 28ms.

C THE ACTUATOR INERTIAS ARE INCLUDED IN THE INERTIA MATRIX

C RETURNED FROM THE DYNAMICS SUBROUTINE.

C
C
C VERSION: i BY Larry Tellmnan 2 Oct 1988

C

C
C
C

SUBROUTINE MMAEINI(INSP,ND)
C
C THIS ROUTINE WILL LOAD THE INITIAL DATA NEEDED FOR THE
MMAE TO

C RUN ON THE PUMA. IT IS CALLED BY THE FFMMBC ROUTINE.
C
C
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C DATE: 26 SEPT 88 Larry Tellman
C

C % % % % % % % % % % % % % % % % % % % % % % % % % % %%

C
SUBROUTINE PFDYN3(Q,QD)

C
C Abstract: This subroutine allows the user to obtain
several
C formulations of the Lagrange-Euler dynamics for a 3
link PUMA-600
C robot arm. The user must select which option and also
provide
C position, velocity, acceleration and joint 6 load
information.
C Any load is assumed to be rigidly attached to joint 6.
All
C user supplied joint 6 values must represent the link
and load
C modeled as one entity. Actuator inertia values are
summed with
C the diagonal inertia terms using Tarn's values. The
reduced
C MACSYMA LE equations are used. This routine is used
by FFMMBC.
C
C
C VERSION 2.0 by LARRY TELLMAN 26 SEPT
88
C
C Inputs:
C
C OPT: An integer variable with selects the dynamics
formulation
C desired.
C
C Q: A (6xl) real vector of joint angles in radians.
C
C QD. A (6xl) real vector of joint velocities in
radians.
C
C 16: A (3x3) matrix of joint 6 interia terms.
C
C RB6: A (3xl) real position vector of the center of
atass of
C joint 6 with respect to itself as ( x.y,z )
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vector.
C
C F6M: A real variable representing the external mass of
joint 6.
C
C Outputs:
C
C D: A (6x6) real matrix of interial terms.
C
C P: A (6xl) real vector of coriolis and centrifugal
forces
C
C GG: A (6XI) GRAVITY VECTOR
C
C SUBROUTINE OPTIONS:
C
C OPT-l: The D matrix is assumed to be diagonal and
coriolis and
C centrifugal terms are ignored.
C
C OPT-2: The full D matrix is calculated but the the
coriolis and
C centrifugal terms are ignored.
C
C

C OPT-3: The full Lagrange-Euler dynamics are calculated.

C TOURQUE CALCULATION:
C T
C T - (D * QDD) + P P - (QD) * H * QD + G
C
C QDD: A (6xl) vector of joint accelerations.
C
C % % % % % % % % % %%%%%%% % % % % % %% %%%%

M M A E A N D K A L M A N F I L T E R R O U N
TINES

%%%%A%%%%%%%%%%%%%%%%%%%%%%%%%%%
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C% % % % % % % % % % % % % % % % % % % % % % % % % %

PROGRAM KALTST
C
C THIS PROGRAM CALCULATES AND STORES THE PROPAGATED

COVARIANCE
C MATRIX AND TEH MEASUREMENT UPDATE COVARIANCE MATRIX.
C
C
C VERSION 1: BY LARRY TELLMAN 31 JUL 88

C

C

C % % % % % % % % % % % % % % % % % % % % % % % % %%% %%

SUBROUTINE KCAIN(IFILT,GAIN)
C

C

C THIS SUBROUTINE WILL COMPUTE THE KALMAN FILTER GAIN FOR
THE
C FIRST THREE LINKS OF THE PUMA ARM. THE CODE HAS BEEN
IREDUCED
C AND GENERATED BY MACSYMA. FOR DETAILS ON THE NOTATION SEE

C DR. MAYBACK'S BOOK vol. 1.

C

C
C VERSION 1 BY LARRY TELLMAN 27 JUL 88

C
C
C INPUTS:

C
C IFILT: THE FILTER NUMBER

C
C COMMON DATA NEEDED:
C
C PTM: 6x6 MATRIX OF P(ti-)

C
C R: 3x3 MATRIX OF THE MEASUREMENT NOISE

C
C OUTPUTS
C
C GAIN: 6x3 KALMAN FILTER GAIN MATRIX
C
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C %%%% % % % % % % % % % % % % % % % % % % % % % % % %

SUBROUTINE MMAE(ND,E,POSD,IPROP,ELOAD)
C

C

C THIS ROUTINE WILL COMPUTE AN ESTIMATE OF THE LOAD

C USING THE MULTPLE MODEL ADAPTIVE ESTIMATION SCHEME.
C SEE DR MAYBECK'S BOOK vol. 2 FOR MORE DETAILS ON THE
C ALGORITHM AND THE NOTATION. THE ROBOT IS ASSUME TO BE A
C THREE LINK PUMA MANIPULATOR.

C
C

C VERSION 1: BY LARRY TELLMAN 2 AUG 88

C

C INPUTS:

C
C ND: THE NUMBER OF DATA POINTS

C
C Z: THE MEASURED OF THE POSITION ERROR IN THE LINKS

C

C POSD: THE DESIRED POSITIONS

G
C DEL: THE TIME BETWEEN MEASUREMENTS
C

C IPORP: THE NUMBER OF ITERATIONS TO PROPAGATE OVER
C
C
C

C OUTPUT
C

C ELOAD: THE ESTIMATE OF THE LOAD
C

C

C % % % % % % % % % % % % % % % % % % % % % % % % % % % % %

% % %%%%%%%% %%%% %% %

SUBROUTINE PROBEST(ELOAD)

C
C THIS ROUTINE WILL CALCULATE THE CONDITIONAL PROBABLITY
C DESITY NEEDED FOR THE MULTIPLE MODEL ADAPTIVE ESTIMATOR

C ALGORITHM. FOR MORE DETAILS SEE DR. MAYBECK'S BOOK vol.
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1.

C H - I FOR THESE CALCULATIONS. THE PREVIOUS VALUE OF THE

I WC CONTIjIONAL PROBALITY IS ASSUNED TO BE 1/3 FOR EACH

FILTER.
C THE CALULATIONS ARE BASED ON LINKS 1 AND 2 ONLY. THIS

SEEMED
C TO PROVIDE THE BEST ESTIMATE OF THE LOAD. THE INITIAL

LOAD
C ESTIMATE HAS A BIAS TO IT AND MUST BE RESCALED.

C
C
C

1 T -1
C p - EXP[ -.5 *RES *A *RES]

3/2 1/2
(2 PI) JAI

C T
C WHERE A - H * PTM * H + R

C
C

C VERSION 1: BY LARRY TELLMAN 3 AUG 88

C
C INPUTS:

C
C RES: THE RESIDUES FROM THE KALMAN FILTER
C
C PTM: THE COVARIANCE MATRIX AT THE END OF THE
PROPAGATION
C
C R: THE MEASURMENT NOISE MATRIX
C

C OUTPUT:
C
C ELOAD: THE ESTIMATE OF THE LOAD
C
C

C % % % % % % % % % % % % % % % % % % % % % % % % % % % %

C %% % % % % % % % % % % % % % % % % % % % % % % % % % %

SUBROUTINE PTPLUS(IF)
C
C
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C THIS ROUTINE WILL COMPUTE THE COVARIANCE MATRIX AFTER THE

C MEASUREMENT UPDATE. THE CODE WAS REDUCED AND GENERATED BY

MACSYMA.
C FOR MORE DETAIL ON THE NOTATION SEE DR. MAYBECK'S BOOK

'ol. 1.
C

C VERSION 1 BY LARRY TELLMAN 3

SEPT 88
C
C INPUT
C
C IF: THE FILTER NUMBER

C
C
C COMMON DATA NEEDED:
C

C

C R: THE MEASUREMENT NOISE MATRIX (3x3)
U

C PTM: THE COVARIANCE MATRIX AFTER THE PROPAGATION CYCLE
(6x6)
C

C OUTPUT:
C
G PTP: THE COVARIANCE MATRIX AFTER THE MEASUREMENT UPDATE
(6x6)
C
C
C
C % % % % % % % % % % % % % % % % % % % % % %%%% % % %

SUBROUTINE PHIMAT(A,DFL,PHI)
C
C %%%%%%%%%% % % % % % % % % % % % % % % % % % % %

C

THIS ROUTINE CONPUTES THE STATE TRANSITION MATRIX WITH THE

C ASSUMPTION THAT THE F MATRIX IS CHANGING SLOWLY
C COMPARED TO THE SYSTEM DYNMAICS. A TRUNCATED TAYLOR
SERIES
C IS USED TO APPROXIMATE THE exp(Ft) EXPRESSION. REFERENCE

C DR. MAYBECK'S BOOK vol. 1.
C
C
C VERSION 1 BY LARRY TELLMAN 27 JUL 88
C
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C
C INPUT:

C IF: THE FILTER NUMBER
C

C A: 6x6 PERTURBATION MATRIX

C
C DEL: TIME BETWEEN SAMPLES

C
C OUTPUT

C
C PHI: THE STATE TRANSITION MATRIX 6x6
C

C

C % % % % % % % % % % % % % % % % % % % % % % % % %

SUBROUTINE PTMINUS(IF,POSD,PHI)

G
C % % % % % % % % % % % % % % % % % % % % % % % % % % % % %

C

C THIS ROUTINE WILL FIND THE COVARIANCE MATRIX AT THE END OF

C THE PROPAGATION CYCLE. AN FIRST ORDER APPROXIMATION IS
MADE
C TO MAKE THE INTEGRATION OF THE (PHI G Q G' PHI') TERM
POSSIBLE.
C PHI HAS A SECOND ORDER APPROXIMATION IN IT. THE INERTIA
MATRIX
C IS ASSUMED TO BE CONSTANT OVER THE PROPAGATION PERIOD.
C

C
C VERSION 1: BY LARRY TELLMAN 31 JUL 88
C
C UPDATE 1: 2 SEPT 88

C
C ALLOW FOR THE PROPAGATION OVER MULTIPLE CYCLES
C
C
C
C INPUTS:

C
C IF: THE FILTER THAT SHOULD BE PROPAGATED
C

C POSD: DESIRED POSITION
C
C PHI: THE STATE TRASITION MATRIX

C
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C COMMON DATA NEEDED:

C PTP: THE (6x6) COVARIANCE MATRIX AFTER THE LAST

M4EASUREMENT

QNOISE: THE (3x3) DYNAMICS DRIVING NOISE. ASSUMED TO

BE DIAGONAL

C
C DEL: THE PROPAGATION TIME

C
C COMMON DATA UPDATED:

C
PTM: THE COVARIANCE MATRIX AT THE END OF THE

PROPAGATION CYCLE
C

o % % % % %%% % % % % % % % % % % % % % % % % % % % % %

C

C

SUBROUTINE XTMINUS(IF,IPROP,PHI)

C THIS ROUTINE WILL COMPUTE THE STATE ESTIMATE AT THE END OF

C A PROPAGATION CYCLE FOR A THREE LINK PUMA ARM.

C

C
C VERSION 1: BY LARRY TELLMAN 2 AUG 88

C
C UPDATE 1: 2 SEPT 88

C TO ALLOW THE PROPAGATION OVER MULTIPLE SAMPLE
C PERIODS

C
C

C INPUTS:
C

C IF: THE FILTER NUMBER
C

C IPROP: THE NUMBER OF CYCLES TO PROPAGATE OVER

C
CC: COMMON DATA NEEEDED:

C XTP: THE STATE ESTIMATE AT THE END OF THE PREVIOUS

C MEASUREMENT UPDATE
C
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C F: SYSTEM DISCRIPTION MATRIX
C
C DEL: THE TIME BETWEEN SAMPLE

C

C OUTPUT
C

C XTM: THE STATE ESTIMATE AFTER THE PROPAGATION CYCLE
C
C PHI: THE STATE TRANSITION MATRIX. NEEDED IN THE
COVARIANCE
C ROUTINE

SUBROUTINE XTPLUS(IF)
C

C
C THIS ROUTINE WILL CONPUTE THE STATE ESTIMATE OF THE KALMAN

* C FILTER EQUATIONS.
C

C VERSION 1: BY LARRY TELLMAN 3 SEPT 88
(C
C
C INPUTS:
C
C IF: THE FILTER NUMBER
C
C COMMON DATA NEEDED:
C
C PTM: COVARIANCE MATRIX AT THE END OF THE PROAGATION
CYCLE
C
C R: MEASUREMENT NOISE MATRIX
C
C RES: THE RESIDULES OF THE STATES
C:
C

C OUTPUT
C
C XTP: THE NEW STATE ESTIMATE AFTER THE NEW MEASUREMENT
C
C
C
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C

%% % %% % % % %% %%%% %% %% %% % % % % % %

0OT HER RO0U T INE S U SE D

C % % % % % % % % % % % % % % % % % % % %

PROGRAM FMAT

C THIS PROGRAM WILL COMPUT THE F MATRIX USED IN PURTABATION
C CONTROL
C OF A 3 LINK PUMA 560 WITH NO LOAD. THE EQUATIONS ARE C
DERIVED
C FROM THE SIMBOLICLLY RTEDUCED EQUATIONS OF MOTION. FOR A
C DIFFERENT

C LOAD THE EOM MUST BE RERUN USING MACSYMA TO GENERATE THE

C FORTRAN
C CODE. THERE ARE THREE DIFFERENT VERSIONS OF THIS PROGRAM.
C ONE FOR EACH OF THE LOADS IN THE MMAE.
C

C SUBROUTINES CALL
C SLCTTJ3 COMPUTES THE TRAJECTORY
C PDCCST3 COMPUTS THE TORQUE FOR 3DOF PUMA

C INPUTS
C NONE
C

C OUTPUTS
C F MATRIX OF NUMBERS FOR EACH POINT ALONG THE C

TRAJECTORY
C
C VERSION 1.0 LARRY TELLMAN 12 JUL 88
C

C % % % % % % % % % % % % % % % % % % % % % % % % % % % % %

C
C

PROGRAM VECMAX

C

C
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C THIS PROGRAM TAKES DATA FROM A 6 X 6 vector DATA FILE
C AND CONVERTS IT INTO THE MATRIXX FORMAT FOR USE IN

C MATRIXX.

C WRITTEN BY: CAPT LARRY TELLMAN

C 14 JUL 88
C NO RIGHTS RESERVED
C
C % % % % % % % % % % % % % % % % % % % % % % % % %

C

PROGRAM MATMAX
C

C THIS PROGRAM TAKES DATA FROM A 6 X 6 MATRIX DATA FILE
C AND CONVERTS IT INTO THE MATRIXX FORMAT FOR USE IN C
C MATRIXX.
C

C WRITTEN BY: CAPT LARRY TELLMAN
14 JUL 88

C NO RIGHTS RESERVED
C
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Appendix B. Trajectory Profiles

This appendix coutains plots of Trajectories Two and Three. It also has plots

of the eigenvalues of the F(a, f) matrices.
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Appendix C. Error Tracki-ng Profiles for Trajectory Three

This appendix contais plots of the tracking errors for Trajectory Three. It

also has the plot of the payload estimate for Trajectory Three.
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Appendix D). Experimtental Results

This appendix contains the experimental results for Trajectory Three. The

first set of plot are of the tracking errors for each of the links. The plots show the

cases where the incorrect SMABC, true SMI3C', and the MMBC. The final plot is

of the payloadl value used by the control-ler and the payload estimate out of the

MMAE.
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